DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA

INTERDEPARTMENTAL CORRESPONDENCE

FILE 0012878, Fayette County OFFICE PI No. 0012878 West Fayetteville Path from SR 54 to CS DATE 894/Lester Road Manie J. Flourny D.E. F.

Materials and Testing Forest Park, Georgia October 5, 2017

FROM Monica L. Flournoy, P.E., State Materials Engineer

TO Kimberly Nesbitt, State Program Delivery Administrator Attn: Ameenah Saleem, Project Manager

SUBJECT Acceptance of Consultant's Retaining Wall Foundation Investigation Report

As requested, we have reviewed the Retaining Wall Foundation Investigation Report that was written on February 27, 2017, and revised on September 16, 2017, by ACCURA of Atlanta, Georgia. This Report is acceptable for use. Copies of this Report should be forwarded to the appropriate Offices by the Project Manager.

The consultant should provide a PDF of the accepted Report to this Office.

If additional information is needed, please contact Nicolas Sotolongo of the Geotechnical Bureau at 404-608-4729 (Direct) or 404-608-4720 (Main).

MLF: GEF: NLS

cc: Michael Presley, P.E., District Engineer, Thomaston David Neighbors, Area Engineer, LaGrange Larry Mullins, P.E., ACCURA (lmullins@accura.com)

DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA

INTERDEPARTMENTAL CORRESPONDENCE

FILE	0012878, Fayette County	OFFICE	Materials and Testing
	PI No. 0012878		Forest Park, Georgia
	West Fayetteville Path from SR 54 to CS	DATE	October 24, 2017
	894/Lester Road Mania L. Floring D.E.T.	_	
FROM	Monica L. Flournoy, P.E., State Materials En	igineer	
то	Kimberly Nesbitt, P.E., State Program Delivery A	Administrator	

Attn: Ameenah Saleem, Project Manager

SUBJECT Acceptance of Consultant's Bridge Foundation Investigation Report

As requested, we have reviewed the Bridge Foundation Investigation Report that was written on February 6, 2017, and revised on October 5, 2017, by ACCURA of Atlanta, Georgia. This Report is acceptable for use. Copies of this Report should be forwarded to the appropriate Offices by the Project Manager.

The consultant should provide a PDF of the accepted Report to this Office.

If additional information is needed, please contact Nicolas Sotolongo of the Geotechnical Bureau at 404-608-4729 (Direct) or 404-608-4720 (Main).

MLF: GEF: NLS

cc: Bill DuVall, P.E., State Bridge and Structural Engineer
 Attn: Lyn Clements, P.E., Assistant State Bridge and Structural Engineer
 Andy Doyle, State Bridge Maintenance Engineer
 Michael Presley, P.E., District Engineer, Thomaston
 David Neighbors, Area Engineer, LaGrange
 Larry Mullins, P.E. (Imullins@accura.com)

Bridge Foundation Investigation (LRFD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 October 5, 2017 Revision No. 2

LOCATIONGeorgia Highway 54 West, near street address 1294 and Piedr Fayette Hospital, Fayetteville, Fayette County, Georgia. The location is approximately midway between Sandy Creek Road the east and Veterans Parkway to the west.							
	GENERAL INFORMATION						
GEOLOGIC FORMATION Piedmont Physiographic Province - The Clarkston Formation described as a sillimanite-garnet-quartz-plagioclase-biotite-muscovite schist interlayered with hornblende-plagioclase amphibolite of Precambrian age underlies the site. The Clark Formation is locally intruded in the Tyrone, Peachtree City a Fayetteville area by younger rocks of the Palmetto Granite which is a coarse-grained porphyritic granite.							
SUBSURFACE FEATURES	The investigation encountered fill materials, residual soils, partially weathered rock (PWR) and auger refusal material. Please see the enclosed Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 and Soil Test Boring Records for specific subsurface conditions at each boring location.						
	Below a surfical topsoil or gravel layer, fill was encountered at all boring locations, except B-5, to depths ranging approximately from 3 to 13 feet. The fill was sampled as either loose or medium dense clayey sand.						
	Residual soils were initially encountered below the topsoil layer in boring B-5 and from below the fill in the remaining borings. The residual soil profile mainly consists of loose and medium dense silty sand. Some clayey sand was also penetrated in the upper portions of three borings. The residual soils extended to the top of partially weathered rock (PWR) at depths of about 43 and 48 feet, respectively, in borings B-2 and B-3 and to boring termination depths of 20 and 60 feet in the remaining three borings.						
	Partially weathered rock was encountered from below the residual soils to auger refusal depths of 48 feet at the location of boring B-2 and 52 feet at B-3.						
	Groundwater was encountered in borings B-2, B-3 and B-4, respectively, at depths of 5, 22 and 27 feet below the ground surface at the time of the field investigation. Groundwater was not observed in boreholes B-1 and B-5 at the time of drilling. No 24-hour groundwater measurements were obtained, since all of the boreholes caved at depths ranging from 7 to 9.5 feet below ground.						
SITE CLASSIFICATION	We recommend a site class of D per AASHTO LRFD 3.10.3.1.						

1.0 -- FOUNDATION RECOMMENDATIONS

Bents	Pile Bent (Type)
North End Bent 2	HP 14x89 (50 ksi)
(Boring B-4)	III 14X07 (50 KSI)
South End Bent 1	HP 1/1x80 (50 kgi)
(Boring B-3)	11F 14x89 (50 KSI)

1.1 -- PILE PROPERTIES

					Maximum	
			Nominal		Factored	
			Compression	Nominal	Structural	
			Stress	Tension Stress	Resistance	
Pi	le Type	Pile Size (in)	(ksi)	(ksi)	(kips)	
HP	(50 ksi)	14 x 89	45.0	45.0	653	

1.2 -- DESIGN LOADS

_	Maximum Factored Strength Limit State Load	Maximum Factored Service Limit State Load	Factored Extreme Event I Limit State Load
Bents	(kips)	(kips)	(kips)
North End Bent 2 (Boring B-4)	250	175	Not Provided
South End Bent 1 (Boring B-3)	250	175	Not Provided

2.0 -- FOUNDATION LOADS

2.1 -- PILE FOUNDATION LOADS

Bents	Pile Type	Size (in)	Down Drag (kips)	Scour (Kips)	Driving Resistance (kips)
North End Bent 2 (Boring B-4)	HP	14x89	N/A	N/A	385
South End Bent 1 (Boring B-3)	HP	14x89	N/A	N/A	385

3.0 FOUNDATION ELEVATIONS									
	Rents	Minimum Tin	Estimated Tin						
-	North End Bent 2 (Boring B-4)	855	836						
	South End Bent 1 (Boring B-3)	843	840						
	4.0 (JENERAL NO	TES						
Elevations	All foundation elevations are based on the soil test boring elevations as shown on the enclosed Soil Test Boring Records. The boring elevations were established by survey using Control Points D-25 and D-26, as referenced on Drawing No. 13-009 of the project plans.								
Waiting Period	An initial waiting period of 30 days is recommended to allow for completion of at least 90 percent of an estimated 6 to 11 inches of settlement (total) beneath the MSE wall end bents. The majority of the settlement should occur during construction of the MSE walls and the amount of settlement remaining after completion of filling should not be significant. We recommend monitoring of MSE wall settlement during construction to confirm the expected performance and determine the final waiting period necessary. Minimal instrumentation to monitor settlement should consist of settlement plates installed at the interface of the wall fill and the existing ground surface								
Staged Construction	Staged construction for pile installation through the end bents is required to prevent possible down-drag loads on the piles from settlement of the in-situ soils under the MSE wall loads. Piles should not be installed until after at least 90 percent of the anticipated settlement has occurred. During MSE wall construction, installation of vertical casing through the reinforced fill is required for subsequent pile installation. Casing will prevent damage to or interference with the MSE wall reinforcement elements.								
Obstructions	Due to the erratic unexpected obstru investigated.	weathering of the actions are possible	rocks within this geologic setting, some e between the borings or in areas not						
As Built Foundation Information	The as built found Engineering Bure	lation information au upon completic	should be forwarded to the Geotechnical on of the foundation system.						

4.1 -- PILE FOUNDATION NOTES

PDO	Driving resistance after minimum tip elevations are achieved in conjunction with Special Provision 520 Piling for LRFD and Special Provision 523 Dynamic Pile Testing. Perform one PDA test at Bent 1 (South-Boring B-3) and Bent 2 (North-Boring B-4)						
Nominal Bearing Resistance of Single Pile	Driving resistance is based on the following field verification method and resistance factor φ_{dyn} per AASHTO LRFD 2014 (10.5.5.2.3-1):						
	Resistance Determination MethodResistance FactorDriving criteria established by dynamic testing of at least two piles per site condition, but no less than 2% of the production piles.0.65						
Freeze Bearing	Piles should not be overdriven at this site. If dynamic bearing has not been achieved by 2 feet above the estimated tip elevation, pile driving should be stopped for a minimum 24 hours and re-started with a warm hammer to check for "freeze" bearing.						
Piles Driven to Hard Rock	The nominal resistance of piles driven to point bearing on hard rock where pile penetration into the rock formation is minimal is controlled by the structural limit state. The Nominal Driving Resistance should not exceed the Factored Structural Resistance. Dynamic pile measurements should be used to monitor for pile damage.						
Drivability	A drivability analysis has been completed on the proposed piles to about their respective estimated tips using a DELMAG D 16-32 pile hammer.						
Down-drag Protection	To avoid inducing down-drag loads into the piles from potential settlement of compressible layers during construction of the MSE wall, we recommend that piles at Bent 1 (South) and Bent 2 (North) be protected from down-drag by delaying pile installation until after at least 90 percent of the anticipated settlement has occurred.						
Pile Casing through MSE Reinforcement Zone	Installation of vertical casing through the MSE reinforced fill is required for subsequent pile installation in order to prevent damage to or interference with the MSE wall reinforcement elements.						

Bridge Foundation Investigation (LRFD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 October 5, 2017 Revision No. 2

5.0 – QA / QC

King Mulli

Prepared By: Larry D. Hullins, P.E.

Attachment A

Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 Key to Symbols and Descriptions Soil Test Boring Records (B-1 through B-5) Laboratory Soil Test Reports

Attachment B

APILE & GRLWEAP Calculations Bent 2 (South-Boring B-3)

Attachment C

Special Provision 523 Dynamic Pile Testing Special Provision 520 Piling for LRFD

ATTACHMENT A

BORING LOCATIONS – MAINLINE PLAN DRAWING NOS. 13-08 & 13-09 KEY TO SYMBOLS AND DESCRIPTIONS SOIL TEST BORING RECORDS (B-1 THROUGH B-5) LABORATORY SOIL TEST REPORTS

MAJOR DIVISIONS			GR SYN	LOUP (BOLS	S TYPICAL NAMES			Undisturbed Sample			Auger Cuttings		
		CLEAN	GW Well graded gravels, gravel - sand mixtures, little or no fines.			X	Standard Penetration Test or Dynamic Cone Penetration Test			Bulk Sample			
	GRAVELS (More than 50% of	GRAVELS (Little or no fines		GP	Poorly gr mixtures	aded gravel little or no	s or grave - sand fines.		Rock Core			Crandall Samp	ler
COARSE	LARGER than the No. 4 sieve size)	GRAVELS WITH FINES		GM	Silty grav	els, gravel	- sand - silt mixtures.		Dilatometer			Pressure Meter	-
GRAINED SOILS		(Appreciable amount of fines)		GC	Clayey g mixtures	ravels, gravo	el - sand - clay		Packer		0	No Recovery	
(More than 50% of material is LARGER than	CANTYO	CLEAN		sw	Well grad or no fine	led sands, g es.	ravelly sands, little	⊻	Water Table at	t time of boring	<u>¥</u>	Water Table af	ter 24 hours
No. 200 sieve size)	More than 50% of	(Little or no fines	s)	SP	Poorly gr	aded sands	or gravelly sands,						
,	coarse fraction is				little or n	o fines.		4	Cor	relation of Standar	d P	enetration Resist	ance
	the No. 4 Sieve	SANDS WITH	I	SM	Silty san	ds, sand - sil	t mixtures		CANTO P		sity T		CLAV
	Size)	FINES	111					+	No of Blows	Relative Density		No of Blows	Consistency
		amount of fines)		SC	Clayey s	Clayey sands, sand - clay mixtures.		-	0 - 4	Very Loose	\vdash	0 - 2	Very Soft
	SILTS AND CLAYS (Liquid limit LESS than 50)			ML	Inorganic	Inorganic silts and very fine sands, rock flour,		\uparrow	5 - 10	Loose	-	3 - 4	Soft
					sility of clayey fine sands or clayey silfs and with slight plasticity.			11 - 30	Medium Dense		5 - 8	Firm	
				Inorganic la		lays of low t	o medium plasticity,		31 - 50	Dense		9 - 15	Stiff
ETNIE					clays.	hays, sandy c	hays, shiry clays, lean		Over 50	Very Dense		16 - 30	Very Stiff
GRAINED				OT	Organic silts and		nd organic silty clays of					31 - 50	Hard
SOILS					low plasticity.		lasticity.					Over 50	Very Hard
(More than 50% of	SILTS AND CLAYS			мн	Inorganic silts, micaceous or					· · · · · · · · · · · · · · · · · · ·			
SMALLER than No. 200 sieve				elastic silts.		╡	Correlation of Dynamic Cone Penetration Resistance with Relative Density and Consistency (Piedmont Residual Soils)				tance with idual Soils)		
size)	(Liquid limit GI	EATER than 50)		СН	clays				SAND & GRAVEL			SILT & CLAY	
				OT	Organic	clays of med	lium to high		No. of Blows	Relative Density		No. of Blows	Consistency
					plasticity, organic silts.				0 - 4	Very Loose		0 - 2	Very Soft
HIG			100 2	рт	Pest and	other highly	r organic soils		5 - 15	Loose		3 - 4	Soft
100		JOIL 3	6 50	T I	1 (4) 400	oner ngniy	organic sours.		16 - 30	Medium Dense		5 - 10	Firm
	FILI				Fill							11 - 30	Stiff
						1		11. da an da a da ante a ser da ante a s					
BOUNDARY CLASSIFICATIONS: Soils possessing characteristics of two groups are designated by combinations of group symbols.					KEY TO SYMBOLS AND								
SILT OR CLAY SA		SAI	ND) GR		VEL	Cobbles Boulders	DESCRIPTIONS					
		Fine N	Medium	Coarse	Fine	Coarse							
Bafarman The T	No.200 No.40 No.10 No.4 3/4" 3" 12" U.S. STANDARD SIEVE SIZE						e r	ACC		UR			
<u>Reference:</u> The Unified Soil Classification System, Corps of Engineers, U.S. Army Technical Memorandum No 3-357 Vol. 1, March, 1953 (Revised April, 1960)													

CO	NTRAC	TED WITH: <u>GeoSystems Engineering, Inc</u>	2.						BORING NO.: <u>B-1</u>
		NAME: <u>Fayetteville Pedestrian Bridge</u>	ing Co	Inc				0	DATE: June 25, 2015
JOE	<u> </u>	20014.003.14 DRILLER. Gable Drill	mc.	ĸ		JME 33	0		
	ELEV.	DESCRIPTION	DEPTH in	NO	TYPE	SAMPLE	S RECOV	W	NOTES
	-	TOPSOIL FILL-Medium dense, brown orange red, clayey SAND		1		7-9-8	10		
	- 890 -		5	2		3-5-6	14	-	
	-	RESIDUUM-Loose, brown orange red, clayey SAND		3		3-5-5	12	-	
-000	- 885 -	Stiff, yellowish red, sandy SILT (MH)	10	4		4-5-7	18	23	LL=57, PL=45, PI=11
	-								
	- 880 -	Medium dense, olive gray, silty SAND	15	5		3-5-6	14	-	
	-								
	- 875	Loose, olive gray, silty SAND	20	6		3-5-5	12		
	-	BORING TERMINATED AT 20 FEET							No groundwater encountered a time of boring
	- 870 -		25						
	-								
	- 865 -		30						
	-								
	- 860 -		35						
	-								BOW-Bottom of Wall#1
	- 855		40						LL-Liquid Limit PL-Platic Limit PL-Plasticity Index

) Preside	Engir lential Dri	neering and Consulting Services, In	nc.					Sheet 1 of
nta, GA ce: 404.	30340 .241.8722	2		<u>B(</u>	DRI	NG L	<u>DG</u>	
CON	ITRAC	TED WITH: GeoSystems Engineering, Inc						BORING NO.: B-2
PRO	JECT	NAME: Fayetteville Pedestrian Bridge						DATE: June 25, 2015
JOB	NO.: _	20014.003.14 DRILLER: Gable Drill	ing Co.	. Inc.	_ R	IG:	CME 550	_ LOGGED BY:Larry
	ELEV.	DESCRIPTION	DEPTH in FEET	NO.	TYPE	SAMPLE BLOWS/6"	S RECOV. W	NOTES
-		\TOPSOIL FILL-Loose, brown orange red, clayey SAND		1		1-2-3	12	
-	- 875	Loose, yellowish brown, clayey SAND	<u>.</u>	2		2-4-6	14	Groundwater encountered at 5
-	- 870	RESIDUUM-Very loose, brown orange, silty SAND		3		2-3-6	12	feet at time of boring
-			10	4		1-2-2	12	
-	- 865	Loose dark vellowish brown silty		-				
-		SAND	15	5		3-3-4	18	
-	- 860			-				
-			20	6		3-4-4	12	
-	- 855	Medium dense, brown orange, silty SAND						
-			25	7		6-8-8	12	
-	- 850					5 10 12	19	
-			30	8		5-10-13	18	
-	- 845					7_10_15	19	
-			35	7		1-12-13	10	
-	- 840	Medium dense, brown orange red, silty SAND		10		5-6-8	14	BOW-Bottom of Wall#1
			40	Ļ				

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sh	leet	2	of	2
<u> </u>		_	~	_

OJECT NAME: Fayetteville Pedestrian Bridge DATE:	B-2		
3 NO.: 20014.003.14 DRILLER: Gable Drilling Co. Inc. RIG: CME 550 LOGGED BY: ELEV. DESCRIPTION DEPTH PEET SAMPLES NOTE #35 PWR-Very dense, black orange red, partially weathered rock 11 25:50.5" 12 -830 AUGER REFUSAL AT 48 FEET 50 - - - - -825 - - - - - - - - -820 -	e 25, 2015		
ELEV. DESCRIPTION Description SAMPLES NOTE -835 PWR-Very dense, black orange red, partially weathered rock	Larry		
Purce Description FEET No. Type BLOWsie* RECOV. w NO.	NOTES		
-835 PWR-Very dense, black orange red, partially weathered rock 11 25-50/5" 12 -830 AUGER REFUSAL AT 48 FEET - - -830 AUGER REFUSAL AT 48 FEET - -820 - - -820 - -820 - -820 - -810 - -810 -	5		
audie 45 11 25-50/5" 12			
830 AUGER REFUSAL AT 48 FEET 50 -825 50 -825 - -820 - -820 - -815 - -816 - -810 - -810 -			
-830			
830 AUGER REFUSAL AT 48 FEET 50			
300 AUGER REFUSAL AT 48 FEET 50 50			
-825 -826 -826 -820 -820 -820 -820 -815 -815 -810			
55 820 60 60 815 816 70			
-810			
-810			
. 70			
- 805			
80			
-795			
. 85			

Accura 3200 Presi	a Engin idential Dr	neering and Consulting Services, In	nc.		וחר				Sheet 1 of 2
Office: 40	4.241.8722	2		BC	JRI	NG LO	JG		
со	NTRAC	TED WITH: GeoSystems Engineering, Inc							BORING NO.: B-3
PR	OJECT	NAME: Fayetteville Pedestrian Bridge		.		10.		0	DATE: June 25, 2015
JOI	B NO.:	_20014.003.14 DRILLER:Gable Drill	ing Co.	Inc.	ĸ	IG:	CME 550	0	LOGGED BY: Larry
	ELEV.	DESCRIPTION	DEPTH in EEET	NO	TYPE	SAMPLE	S	w	NOTES
		TOPSOIL		1		2 / 9	12		
	- 890				5-4-0	12			
	-							-	
			5	2		4-6-6	14		
	- 885								
	-			3		5-6-5	12		
	-	Loose, reddish brown, clayey SAND							
BOW=882 -	-		10	4		2-3-5	14		
	- 880								
	-								
	-	RESIDUUM-Loose, gray orange, silty						-	
	-	SAND	15	5		2-2-3	14		
	- 875								
	-								
	-	Loose brown orange silty SAND							
	-	Loose, brown brange, sity SAND	20	6		2-2-3	12		
	- 070								
	- 870								
	-		-						feet at time of boring
	-			7		4-4-4	12		
	-		25						
	- 865								
	-								
	-	Medium dense, reddish yellow, silty SAND		8		4-5-11	18		
	-		30		/				
	- 860								
	_								
	-	Loose, brown orange silty SAND		- -		3-5-5	14		
	-		35	Ĺ		5-5-5			
	- 855								
									BOW-Bottom of Wall#1
		Medium dense, brown orange red, silty							
	-	SAND	40	10	7	6-9-11	14		
	- 850								
	-	Medium dense, brown orange red, silty							

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722	BORING LOG		Sheet 2 of
CONTRACTED WITH: GeoSystems Engineering, Inc.		BORING NO.:	B-3

JJECI	NAME: Fayetteville Pedestrian Bridge							DATE:	June 2	5, 2015
3 NO.:	20014.003.14 DRILLER: Gable 1	Drilling Co.	Inc	R	IG:	CME 55	0		BY:	Larry
	DESCRIPTION	DEPTH			SAMPLE	S		ļ ,		
ELEV.		FEET	NO.	TYPE	BLOWS/6"	RECOV.	W		NOTES	
	SAND		 				-			
-		45	11		3-7-10	12				
		45								
- 845										
-	PWR-Very dense, orange brown.									
	partially weathered rock	50	12		20-50/4"	12				
		50								
- 840										
-	AUGER REFUSAL AT 52 FEFT									
		55								
- 835										
		60								
- 830										
-										
-		65								
- 825										
		70								
- 820										
		75								
- 815										
		80								
- 810										
-										
_										
		85								

Sheet 2 of 2

a, GA 404	A 30340			BC	DRI	NG LO	C			
		TED WITH: Coosystems Engineering Inc								
		NAME: Eavetteville Pedestrian Bridge						DATE · June 25, 2015		
IOB		20014 003 14 DRILLER: Gable Drill	ing Co	Inc	R	IG [.] (ME 55	0	LOGGED BY: Larry	
с г					_ `		-	0		
	ELEV.	DESCRIPTION	in	NO	TVDE	SAMPLE BLOWS/6"	S RECOV	\A/	NOTES	
96		FILL-Gravel	FEEI	NO.	TIFE	BLOWS/0	RECOV.	vv		
-	- 895	FILL-Medium dense, brown orange red, clayey SAND	-	1		2-5-6	12	-		
-		RESIDUUM-Medium dense, brown orange red, clayey SAND	5	2		5-8-14	14	-		
	- 890									
-		Stiff, yellowish red, sandy SILT (ML)		3		3-4-6	12	_	LL=49, PL=41, PI=8	
			10	4		3-5-8	18			
	- 885									
+										
ł										
ŀ			15	5	/	3-5-6	14			
	- 880							1		
-		Loose alive grou silty CAND								
-		Loose, onve gray, sitty SAND		6		2-3-4	12	1		
ŀ			20		7			1		
	- 875									
-				7		2-4-4	12	1		
-			25	, 	/			-		
╞	- 870									
Ī			¥.						Groundwater encountered at 2	
		Medium dense, white brown orange, silty				4.6.9	10	1	leet at time of boring	
-		SAND	30	8		4-6-8	18			
	- 865									
ŀ										
-								-		
Ī			35	9		3-6-7	18			
	- 860									
									BOW-Bottom of Wall#2	
-									LL-Liquid Limit	
ŀ			40	10		3-4-8	14		PL-Platic Limit	
ŀ			40		/			1	PI-Plasticity Index	
	- 855			1						

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive

3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sheet	2	of	2
-------	---	----	---

JECT	NAME: Favette	eville Pedestria	n Bridge	<i>.</i>						DATE: June	<u>в-4</u> 25. 2015	
3 NO.:	20014.003.14	LOGGED BY:	Larrv									
					1			-0	<u> </u>			
ELEV.		DESCRIPTION		in FFFT	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES		
-	Medium dens		red silty									
-	SAND	e, black blange	ieu, siity	45	11		5-8-10	12				
				45								
- 850												
-												
					12		3 4 7	12				
-				50	12		5-4-7	12				
- 845												
	Medium dens	e, light gray, si	lty SAND		 							
				55	13		4-6-7	14				
- 840												
					14		5-7-7	14				
	BORING TEI	RMINATED at	60 FEET	60								
- 835												
				65								
- 830												
-												
-												
-				70								
- 825												
-				75								
- 820												
				80								
- 815												
-					-							
-					1							
-				95								
				00	1							

Accura	a Engi	neering and Consulting Services, I	nc.						Sheet 1 of 1
3200 Pres Atlanta, G Office: 40	A 30340 4.241.8722	1ve 2		<u>B(</u>	DRI	NG L(<u>DG</u>		
CO PR	NTRAC	CTED WITH: <u>GeoSystems Engineering, Inc</u> NAME: Favetteville Pedestrian Bridge	2.						BORING NO.: <u>B-5</u> DATE: June 25, 2015
JOI	B NO.:	20014.003.14 DRILLER: Gable Drill	ing Co.	Inc.	R	IG:	CME 55	0	LOGGED BY: Larry
		DECODIDITION	DEPTH			SAMPLE	S		NOTEO
	ELEV.	DESCRIPTION	in FEET	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES
BOW=904 -	- 905	TOPSOIL RESIDUUM-Very stiff to stiff, red, sandy SILT (ML)		1		4-7-16	10	-	
	-		5	2		4-7-8	12	13	LL=48, PL=34, PI=14
	- 900 Medium dense, brown orange red, silty SAND					4-8-9	12	-	
	-		10	4		3-5-6	18	-	
	- 895 - -			-					
	-		15	5		4-6-7	14	-	
	- 890 - -			-					
	- - - 885	BORING TERMINATED AT 20 FEET	20	6		4-4-7	12	-	No groundwater encountered at time of boring
	-			-					
	- 880 -								
	- - - 875 -		30	-					
	- - - 870		35						
	-		40						BOW-Bottom of Wall#2 LL-Liquid Limit PL-Platic Limit PI-Plasticity Index
	- 865 -			-					

	Client:	GeoSysten	ns Engineering,	Inc.									
	Project:	Fayettevill	Fayetteville Pedestrian Bridge/Walking Trail										
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785						
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh						
	Sample ID:	S-4		Test Date:	08/02/17	Checked By:	MCM						
	Depth :	9.5 ft		Test Id:	286071								
	Test Comm	ent:											
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	t								
	Sample Cor	mment:											

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayetteville					
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-5+S-6 C	omposite	Test Date:	08/02/17	Checked By:	MCM
	Depth :	14.5-19.5	ft	Test Id:	286072		
	Test Comm	ent:					
	Visual Desc	ription:					
	Sample Cor	mment:					

	Client:	GeoSysten	ns Engineering,	Inc.								
	Project:	Fayettevill	ville Pedestrian Bridge/Walking Trail									
nd	Location:	Fayettevill		Project No:	GTX-306785							
II9	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh					
	Sample ID:	S-2+S-3 C	Composite	Test Date:	08/02/17	Checked By:	MCM					
	Depth :	4.5-7.0 ft		Test Id:	286073							
	Test Comm	ent:										
	Visual Desc	ription:	Moist, yellowis	y sand								
	Sample Co	mment:										

Sand/Gravel Hardness : ---

#200

0.075

38

	Client:	GeoSysten	ns Engineering,	Inc.								
2	Project:	Fayetteville	ayetteville Pedestrian Bridge/Walking Trail									
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785					
1	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh					
	Sample ID:	S-6		Test Date:	08/02/17	Checked By:	MCM					
	Depth :	19.5 ft		Test Id:	286074							
	Test Comm	ent:										
	Visual Desc	ription:	Moist, dark ye	llowish brown s	silty sand							
	Sample Cor	mment:										

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 #10 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 81.9 18.1 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.7863 mm D₃₀=0.1472 mm 4.75 100 #4 D₆₀ = 0.3850 mm $D_{15} = N/A$ #10 2.00 99 D₅₀ = 0.2894 mm $D_{10} = N/A$ #20 0.85 88 #40 0.42 63 $C_c = N/A$ $C_u = N/A$ 45 # 60 0.25 **Classification** 30 #100 0.15 <u>ASTM</u> N/A #200 0.075 18 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSyster	ns Engineering	Inc.					
	Project:	Fayettevill	Fayetteville Pedestrian Bridge/Walking Trail						
ind	Location:	Fayetteville, Georgia				Project No:	GTX-306785		
H	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh		
	Sample ID:	S-3+S-4 (Composite	Test Date:	08/02/17	Checked By:	MCM		
	Depth :	7.0-9.5 ft		Test Id:	286075				
	Test Comm	ent:							
	Visual Desc	ription:	Moist, reddish	brown clayey					
	Sample Comment:								

	% Cobb	le	% Gravel		% Sand		% Silt & Clay Size	
	-		2.4		57.6			40.0
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies		Coefficients		
						$D_{85} = 0.7948 \text{ mm}$ $D_{30} = \text{N/A}$		$D_{30} = N/A$
3/4in	19.00	100				$D_{60} = 0.27$	15 mm	$D_{15} = N/A$
1/2in	12.50	98			-	$D_{ro} = 0.1647 \text{ mm}$		$D_{10} = N/A$
#4	4.75	98			-			
#10	2.00	96			-	$C_u = N/A$		$C_{C} = N/A$
#20	0.85	87			-		<u>Class</u>	sification
#40	0.42	70			-	ASTM	N/A	
# 60	0.25	58			1			
#100	0.15	48				ΔΔSHTO	Silty Soils (1	$A_{-4}(0)$
#200	0.075	40				1.001110	Sinty Solis (7	(+ (0))
					_			
						Sample/Test Description Sand/Gravel Particle Shape :		
						Sand/Grav	vel Hardness	:

	Client:	GeoSystems Engineering, Inc.								
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
3	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-8		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	29.5 ft		Test Id:	286076					
	Test Comment:									
	Visual Desc	ription:	Moist, reddish	yellow silty sar	nd					
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #200 #100 3/8in 60 #10 #20 #40 #4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 0.01 0.001 1000 10 1 0.1 Grain Size (mm) % Cobble % Silt & Clay Size % Gravel % Sand 16 83.6 14 8

			1.0				03.0
Sieve Name	Sieve Size, mm	Percen	t Finer	Spec. Percent	(Complies	
3/8in	9.50	10	0				
#4	4.75	9	3				
#10	2.00	9	5				
#20	0.85	8	1				
#40	0.42	5	7				
# 60	0.25	3	5				
#100	0.15	2	1				
#200	0.075	1!	5				

	1 110							
<u>Coefficients</u>								
D ₈₅ =0.9104 mm	D ₃₀ =0.1935 mm							
D ₆₀ =0.4570 mm	$D_{15} = 0.0761 \text{ mm}$							
D ₅₀ =0.3554 mm	D ₁₀ =N/A							
C _u =N/A	C _c =N/A							

ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSystems Engineering, Inc.							
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail						
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
9	Boring ID:	B-4		Sample Type:	bag	Tested By:	twh		
-	Sample ID: S-3+S-4 Composite			Test Date:	08/02/17	Checked By:	MCM		
	Depth :	7.0-9.5 ft		Test Id:	286077				
	Test Comm	ent:							
	Visual Description: Moist, yellowi			sh red sandy sil	t				
	Sample Cor	nment:							

Client:	GeoSysten	ns Engineering,	Inc.			
Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail		
Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
Boring ID:	B-4		Sample Type:	bag	Tested By:	twh
Sample ID:	S-7		Test Date:	08/02/17	Checked By:	MCM
Depth :	24.5 ft		Test Id:	286078		
Test Comm	ent:					
Visual Desc	ription:	Moist, olive gr	ay silty sand			
Sample Cor	mment:					

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 70.8 29.2 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.6957 mm $D_{30} = 0.0792 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.3388 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = 0.2535 \text{ mm}$ $D_{10} = N/A$ #20 0.85 92 68 #40 0.42 $C_c = N/A$ $C_u = N/A$ 50 # 60 0.25 **Classification** 39 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	Client: GeoSystems Engineering, Inc.								
-	Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail					
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
9	Boring ID:	B-4		Sample Type:	bag	Tested By:	twh			
	Sample ID: S-13+S-14 Composite		Test Date:	08/02/17	Checked By:	MCM				
	Depth :	54.5-59.5	ft	Test Id:	286079					
	Test Comment:									
	Visual Description: Moist, light gra			ay silty sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #100 #200 60 #10 #40 #20 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 71.1 28.9 ____ Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 1.4299 mm $D_{30} = 0.0847 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.5754 mm $D_{15} = N/A$ #10 2.00 94 D₅₀ = 0.3948 mm $D_{10} = N/A$ #20 0.85 71 51 #40 0.42 $C_u = N/A$ $C_c = N/A$ # 60 0.25 42 **Classification** 35 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

	Client:	Client: GeoSystems Engineering, Inc.							
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail				
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
9	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh		
	Sample ID: S-1+S-2 Composite			Test Date:	08/02/17	Checked By:	MCM		
	Depth :	1.0-4.5 ft		Test Id:	286080				
	Test Comm	ent:							
	Visual Description: Moist, red san			dy silt					
	Sample Cor	mment:							

Particle Size Analysis - ASTM D422 #100 #200 60 #40 #20 0 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 46.3 53.7 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.4722 mm $D_{30} = N/A$ 4.75 100 #4 D₆₀ = 0.1484 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = N/A$ $D_{10} = N/A$ #20 0.85 98 83 #40 0.42 $C_c = N/A$ $C_u = N/A$ # 60 0.25 68 Classification Sandy Silt (ML) #100 60 0.15 <u>ASTM</u> #200 0.075 54

Sample/Test Description
Sand/Gravel Particle Shape :

AASHTO Clayey Soils (A-7-5 (6))

	Client:	GeoSystems Engineering, Inc.								
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
3	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-5		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	14.5		Test Id:	286081					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, red silty	/ sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422

	Client:	GeoSystems Engineering, Inc.									
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail								
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh				
	Sample ID:	S-4		Test Date:	08/04/17	Checked By:	MCM				
	Depth :	9.5 ft		Test Id:	286109						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	lt						
	Sample Cor	mment:									

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	B-1	9.5 ft	23	57	46	11	-2.1	Sandy Elastic silt (MH)

Sample Prepared using the WET method 18% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: RAPID Toughness: LOW

	Client:	GeoSysten	ns Engineering,	Inc.					
3	Project:	Fayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
	Boring ID:	B-4		Sample Type:	bag	Tested By:	n/a		
	Sample ID:	ample ID: S-3+S-4 Composite			08/04/17	Checked By:	MCM		
	Depth :	7.0-9.5 ft		Test Id:	286112				
	Test Comm	ent:							
	Visual Desc	ription:	Moist, yellowis	h red sandy sil	t				
	Sample Cor	mment:							

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3+S-4 Composite	B-4	7.0-9.5 ft	22	49	41	8	-2.4	Sandy Silt (ML)

Sample Prepared using the WET method 19% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

Client:	GeoSysten	ns Engineering,	Inc.			
Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail		
Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
Boring ID:	B-5		Sample Type:	bag	Tested By:	twh
Sample ID:	S-1+S-2 C	omposite	Test Date:	08/04/17	Checked By:	MCM
Depth :	1.0-4.5 ft		Test Id:	286111		
Test Comm	ent:					
Visual Desc	ription:	Moist, red san	dy silt			
Sample Cor	nment					

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-1+S-2 Composite	B-5	1.0-4.5 ft	13	48	34	14	-1.5	Sandy Silt (ML)

Sample Prepared using the WET method 17% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

ATTACHMENT B

APILE & GRLWEAP CALCULATIONS BENT 1 (NORTH-BORING B-4) BENT 2 (SOUTH-BORING B-3)

	FPB B4-65_FA. 4. ap7o								
	APLIE for Windows, Version 2015.7.6								
	Serial Number : 139304252								
	A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved								
	This program is licensed to :								
	GeoSystems Engineering, Inc. Roswell, GA								
Data	Path to file locations : C:\Users\Imullins\Documents\Calculations\APILE								
Data	Name of input data file : FPB B4-65_FA.4.ap7d Name of output file : FPB B4-65_FA.4.ap7o Name of plot output file : FPB B4-65_FA.4.ap7p								
	Time and Date of Analysis								
	Date: September 15, 2017 Time: 17:02:11								
1	**************************************								
	Fayetteville Pedestrian Bridge – North Bent (B-4) HP14x89 at 65 feet DESIGNER : LDM JOB NUMBER : GeoSystems 15-2511								
	METHOD FOR UNIT LOAD TRANSFERS :								
	- FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used.								
	COMPUTATION METHOD(S) FOR PILE CAPACITY :								
	- FHWA (Federal Highway Administration)								
	TYPE OF LOADING : - COMPRESSION								

FPB B4-65_FA. 4. ap7o

PILE TYPE :

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS :

-	MODULUS O	F ELASTICITY	= 0	. 290E+08	PSI
-	CROSS SEC	TION AREA	=	203.23	I N2

NONCIRCULAR PILE PROPERTIES :

-	TOTAL PILE LENGTH, TL	=	65.00 FT.
-	PILE STICKUP LENGTH, PSL	=	0.00 FT.
-	ZERO FRICTION LENGTH, ZFL	=	0.00 FT.
-	PERIMETER OF PILE	=	57.05 IN.
-	TIP AREA OF PILE	=	203.23 IN2
-	INCREMENT OF PILE LENGTH		
	USED IN COMPUTATION	=	1.00 FT.

SOIL INFORMATIONS :

	LATERAL	EFFECTI VE	FRI CTI ON	BEARI NG
SOI L	EARTH	UNI T	ANGLE	CAPACI TY
TYPE	PRESSURE	WEI GHT	DEGREES	FACTOR
		LB/CF		
SAND	0.00	115.00	28.00	0.00
SAND	0.00	115.00	30.00	0.00
CLAY	0.00	115.00	0.00	0.00
CLAY	0.00	115.00	0.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	51.00	28.00	0.00
SAND	0.00	51.00	28.00	0.00
SAND	0.00	51.00	30.00	0.00
SAND	0.00	51.00	30.00	0.00
	SOI L TYPE SAND SAND CLAY CLAY SAND SAND SAND SAND SAND SAND	LATERAL SOIL EARTH TYPE PRESSURE SAND 0.00 SAND 0.00 CLAY 0.00 CLAY 0.00 SAND 0.00 SAND 0.00 SAND 0.00 SAND 0.00 SAND 0.00 SAND 0.00 SAND 0.00 SAND 0.00	LATERAL EFFECTIVE SOIL EARTH UNIT TYPE PRESSURE WEIGHT LB/CF SAND 0.00 115.00 SAND 0.00 115.00 CLAY 0.00 115.00 CLAY 0.00 115.00 SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00	LATERAL EFFECTIVE FRICTION SOIL EARTH UNIT ANGLE TYPE PRESSURE WEIGHT DEGREES LB/CF LB/CF 28.00 SAND 0.00 115.00 28.00 SAND 0.00 115.00 0.00 CLAY 0.00 115.00 0.00 CLAY 0.00 115.00 28.00 SAND 0.00 115.00 28.00 SAND 0.00 115.00 28.00 SAND 0.00 51.00 28.00 SAND 0.00 51.00 28.00 SAND 0.00 51.00 28.00 SAND 0.00 51.00 30.00 SAND 0.00 51.00 30.00

MAXIMUM	UNDI STURB	REMOLDED			
UNI T	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	1.10	0.00	0.00	0.00	0.00
0. 10E+08*	1.10	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
	MAXI MUM UNI T BEARI NG KSF 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08*	MAXI MUM UNI T UNDI STURB SHEAR BEARI NG KSF STRENGTH KSF 0. 10E+08* 0. 00 0. 10E+08* 0. 00 0. 10E+08* 0. 00 0. 10E+08* 1. 10 0. 10E+08* 0. 00 0. 10E+08* 0. 00	MAXI MUM UNI T UNDI STURB SHEAR REMOLDED SHEAR BEARI NG KSF STRENGTH KSF STRENGTH KSF STRENGTH KSF 0. 10E+08* 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 10E+08* 1. 10 0. 00 0. 10E+08* 0. 00 0. 00	MAXI MUM UNI T UNDI STURB SHEAR REMOLDED SHEAR BLOW BEARI NG KSF STRENGTH KSF STRENGTH KSF STRENGTH KSF COUNT 0. 10E+08* 0. 00 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 00 0. 10E+08* 1. 10 0. 00 0. 00 0. 10E+08* 1. 10 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 00	MAXI MUM UNI T UNDI STURB SHEAR REMOLDED SHEAR BLOW COUNT UNI T SKI N FRI CTI ON KSF 0.10E+08* 0.00 0.00 0.00 0.00 0.00 0.10E+08* 0.00 0.00 0.00 0.00 0.00 0.10E+08* 0.00 0.00 0.00 0.00 0.00 0.10E+08* 1.10 0.00 0.00 0.00 0.00 0.10E+08* 1.10 0.00 0.00 0.00 0.00 0.10E+08* 0.00 0.00 0.00 0.00 0.00

* MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0. 10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.
| LRFD FACTOR
ON UNIT | LRFD FACTOR
ON UNIT |
|------------------------|---|
| FRICTION | DEARTING |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| 1.000 | 1.000 |
| | LRFD FACTOR
ON UNI T
FRI CTI ON
1. 000
1. 000 |

1

PILE	TOTAL SKIN	END	ULTI MATE
		BEARING	
		1 2	1 2
1.00	0.0	2.5	2.6
2.00	0.5	4.5	5.1
3.00	1.2	7.4	8.7
4.00	2.2	10.2	12.4
5.00	3.6	12.1	15.7
6.00	5.2	13.5	18.7
7.00	8.8 1/ 0	14.1	22.9 28.1
9 00	19.2	14.1	33 2
10,00	24.4	14.0	38.4
11.00	29.7	14.0	43.6
12.00	34.9	14.0	48.9
13.00	40.1	14.0	54.1
14.00	45.4	14.0	59.3
15.00	50.6	14.0	64.6 70.1
17 00	55. o 61. 0	14.3	70. T 76. A
18.00	66.3	16.4	82 7
19.00	71.4	17.4	88.8
20.00	76.5	18.5	95.0
21.00	81.7	18.8	100. 5
22.00	87.1	18.8	105.9
23.00	92.6	18.8	111.4
24.00	98. Z 104. 0	10.0 10.0	117.U 122.Q
26.00	104.0	18.8	122.0
27.00	115.8	18.8	134.6
28.00	121.9	18.8	140. 7
		Page 3	

	FPB	B4-65 FA. 4. ap7c)
29.00	128.7	18.8	147.5
30.00	136.2	18.8	155.0
31.00	143.9	18.8	162.7
32.00	151.6	18.8	170. 4
33.00	159.6	18.8	178. 4
34.00	167. 6	18. 8	186.4
35.00	175. 9	18. 8	194.6
36.00	184. 2	18.8	203. 0
37.00	192. 7	18.8	211. 5
38.00	201. 3	18.8	220. 1
39.00	210. 0	18.8	228. 8
40.00	218.9	18.8	237.7
41.00	228.0	18.8	246.8
42.00	237. 1	18.8	255.9
43.00	246. 5	18.8	265.2
44.00 45.00	255.9 265.5 275.2	18.8 18.8	274.7 284.3
47.00	275.2	10. 0	294.0
	285.1	18. 8	303.9
	295.1	18. 9	313.8
49.00	305. 2 315. 5	18.8 18.8	324.0
51.00 52.00	325.9	18.8 18.8	344.7
53.00 54.00	347.1	18.8 18.8	365.9
55.00	368. 9	18. 8	387.7
56.00	380. 0	18. 8	398.8
57.00	391.2	18. 8	410. 0
58.00	402.6	18. 8	421. 4
59.00	414. 1	18. 8	432.9
60.00	425. 7	18. 8	444.5
61.00	437.5	18.8	456.3
62.00	449.4	18.8	468.2
63.00	461.5	18. 8	480.3
64.00	473.7	18. 8	492.5
65.00	486.0	18.8	504.8

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

T-Z CURVE	NO. OF	DEPTH TO CURVE	LOAD TRANSFER	PILE MOVEMENT
NO.	POI NTS	FT.	PSI	IN.
1	10	0. 0000E+00	0.0000E+00 0.5920E-01 0.1184E+00 0.2368E+00 0.3552E+00 0.4736E+00 0.5328E+00	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01

		FPB B4-65 F	A. 4. ap7o	
			0.5920E+00 0.5920E+00 0.5920E+00	0. 1000E+00 0. 5000E+00 0. 2000E+01
2	10	0. 3025E+01	0.0000E+00 0.1697E+00 0.3394E+00 0.6787E+00 0.1018E+01 0.1357E+01 0.1527E+01 0.1697E+01 0.1697E+01 0.1697E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
3	10	0. 5958E+01	0.0000E+00 0.3795E+00 0.7590E+00 0.1518E+01 0.2277E+01 0.3036E+01 0.3416E+01 0.3795E+01 0.3795E+01 0.3795E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
5	10	0.12025.02	0.0000E+00 0.1920E+01 0.3200E+01 0.4800E+01 0.5760E+01 0.5760E+01 0.5760E+01 0.5760E+01 0.5760E+01 0.5760E+01	0. 0000E+00 0. 2906E-01 0. 5629E-01 0. 1035E+00 0. 1453E+00 0. 1816E+00 0. 3632E+00 0. 5448E+00 0. 9080E+00 0. 3632E+01
6	10	0. 1796F+02	0.0000E+00 0.2292E+01 0.3819E+01 0.5729E+01 0.6875E+01 0.6875E+01 0.6875E+01 0.6875E+01 0.6875E+01 0.6875E+01	0.0000E+00 0.2906E-01 0.5629E-01 0.1035E+00 0.1453E+00 0.3632E+00 0.5448E+00 0.9080E+00 0.3632E+01
7	10	0 1800F±02	0. 0000E+00 0. 2262E+01 0. 3769E+01 0. 5654E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01	0.0000E+00 0.2906E-01 0.5629E-01 0.1035E+00 0.1453E+00 0.3632E+00 0.5448E+00 0.9080E+00 0.3632E+01
,	10	0. 1000L+02	0. 0000E+00 0. 7434E+00 0. 1487E+01 0. 2974E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01

		FPB B4-65_F	A. 4. ap7o	
0	10	0 10025 02	0. 4460E+01 0. 5947E+01 0. 6691E+01 0. 7434E+01 0. 7434E+01 0. 7434E+01	0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
0	10	0. 1903E+02	0.0000E+00 0.7567E+00 0.1513E+01 0.3027E+01 0.4540E+01 0.6053E+01 0.6810E+01 0.7567E+01 0.7567E+01 0.7567E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+01 0.2000E+01
10	10	0. 20005 - 02	0.0000E+00 0.7567E+00 0.1513E+01 0.3027E+01 0.4540E+01 0.6053E+01 0.6810E+01 0.7567E+01 0.7567E+01 0.7567E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
10	10	0.2000E+02	0.0000E+00 0.7789E+00 0.1558E+01 0.3115E+01 0.4673E+01 0.6231E+01 0.7010E+01 0.7789E+01 0.7789E+01 0.7789E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
11	10	0. 2403E+02	0.0000E+00 0.8464E+00 0.1693E+01 0.3386E+01 0.5079E+01 0.6772E+01 0.7618E+01 0.8464E+01 0.8464E+01 0.8464E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
12	10	0. 2796E+02	0.0000E+00 0.9406E+00 0.1881E+01 0.3762E+01 0.5644E+01 0.7525E+01 0.8466E+01 0.9406E+01 0.9406E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.2000E+01
13	10	0. 2800E+02	0. 0000E+00	0. 0000E+00

Page 6

		FPB B4-65_F	A. 4. ap7o	
		_	0. 1045E+01 0. 2091E+01 0. 4181E+01 0. 6272E+01 0. 8362E+01	0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01
14	10	0_4903F+02	0. 9408E+01 0. 1045E+02 0. 1045E+02 0. 1045E+02	0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
14		0.47032+02	0.0000E+00 0.1510E+01 0.3021E+01 0.6041E+01 0.9062E+01 0.1208E+02 0.1359E+02 0.1510E+02 0.1510E+02 0.1510E+02	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
15	10	0. 6996E+02	0. 0000E+00 0. 1802E+01 0. 3604E+01 0. 7208E+01 0. 1081E+02 0. 1442E+02 0. 1622E+02 0. 1802E+02 0. 1802E+02 0. 1802E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01

TIP LOAD	TIP MOVEMENT
KIP	IN.
0.0000E+00	0.0000E+00
0. 1175E+01	0. 9080E-02
0. 2350E+01	0. 1816E-01
0. 4700E+01	0. 3632E-01
0. 9399E+01	0. 2361E+00
0. 1410E+02	0.7627E+00
0. 1692E+02	0. 1326E+01
0. 1880E+02	0. 1816E+01
0. 1880E+02	0. 2724E+01
0. 1880E+02	0. 3632E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD TOP MOVEMENT KIP IN. IN. IN. IN. 0.5519E+00 0.1437E-03 IN. IN. IN. 0.5519E+01 0.1437E-03 IN. IN. IN. 0.2760E+02 0.7184E-02 IN. IN. IN. 0.5519E+02 0.7184E-02 IN. IN. IN. 0.2672E+03 0.7148E-01 IN. IN. IN. 0.4836E+03 0.1402E+00 IN. IN. IN.	TIP LOAD KIP 0. 1294E-01 0. 1294E+00 0. 6470E+00 0. 1294E+01 0. 5022E+01 0. 6198E+01 Page 7	TIP MOVEMENT IN. 0. 1000E-03 0. 1000E-02 0. 5000E-02 0. 1000E-01 0. 5000E-01 0. 1000E+00
---	---	---

	FPB	B4-65_FA. 4. ap7o	
0. 4926E+03	0.5410E+00	0. 1175E+02	0.5000E+00
0. 4962E+03	0. 1041E+01	0. 1529E+02	0. 1000E+01
0. 4997E+03	0. 2042E+01	0. 1880E+02	0. 2000E+01

Fayetteville Pedestrian Bridge - North Bent (B-4) HP14x89

Axial Load (kips)

Fayetteville Pedestrian Bridge North Bent (B-4) HP14x89

РРВ ВЗ-55_FА. ар7о
APILE for Windows, Version 2015.7.6
Serial Number : 139304252
A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved
This program is licensed to :
GeoSystems Engineering, Inc. Roswell, GA
Path to file locations : C:\Users\Imullins\Documents\Calculations\APIL
Name of input data file : FPB B3-55_FA.ap7d Name of output file : FPB B3-55_FA.ap7o Name of plot output file : FPB B3-55_FA.ap7p
Time and Date of Analysis
Date: August 10, 2017 Time: 16:50:11
1 ************************************
Fayetteville Pedestrian Bridge – South Bent (B-3) HP14x89 at 55 feet DESIGNER : LDM JOB NUMBER : GeoSystems 15-2511
METHOD FOR UNIT LOAD TRANSFERS :
- FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used.
COMPUTATION METHOD(S) FOR PILE CAPACITY : - FHWA (Federal Highway Administration)
TYPE OF LOADING : - COMPRESSION

FPB B3-55_FA. ap7o

PILE TYPE :

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS :

-	MODULUS OF ELASTICITY	= 0.290E+08 PS	L
-	CROSS SECTION AREA	= 203.23 IN	2

NONCIRCULAR PILE PROPERTIES :

-	TOTAL PILE LENGTH, TL	=	55.00 FT.
-	PILE STICKUP LENGTH, PSL	=	0.00 FT.
-	ZERO FRICTION LENGTH, ZFL	=	0.00 FT.
-	PERIMETER OF PILE	=	57.05 IN.
-	TIP AREA OF PILE	=	203.23 IN2
-	INCREMENT OF PILE LENGTH		
	USED IN COMPUTATION	=	1.00 FT.

SOIL INFORMATIONS :

	LATERAL	EFFECTI VE	FRI CTI ON	BEARI NG
SOI L	EARTH	UNI T	ANGLE	CAPACI TY
TYPE	PRESSURE	WEI GHT	DEGREES	FACTOR
		LB/CF		
SAND	0.00	115.00	30.00	0.00
SAND	0.00	115.00	30.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	51.00	30.00	0.00
SAND	0.00	51.00	30.00	0.00
SAND	0.00	51.00	45.00	0.00
SAND	0.00	51.00	45.00	0.00
SAND	0.00	51.00	0.00	0.00
SAND	0.00	51.00	0.00	0.00
	SOI L TYPE SAND SAND SAND SAND SAND SAND SAND SAND	LATERAL SOI L EARTH TYPE PRESSURE SAND 0. 00 SAND 0. 00	LATERAL EFFECTIVE SOIL EARTH UNIT TYPE PRESSURE WEIGHT LB/CF SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00	LATERAL EFFECTIVE FRICTION SOIL EARTH UNIT ANGLE TYPE PRESSURE WEIGHT DEGREES LB/CF LB/CF 0.00 115.00 30.00 SAND 0.00 115.00 30.00 SAND 0.00 115.00 28.00 SAND 0.00 51.00 30.00 SAND 0.00 51.00 45.00 SAND 0.00 51.00 0.00 SAND 0.00 51.00 0.00

MAXIMUM	MAXIMUM	UNDI STURB	REMOLDED			
UNI T	UNI T	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
FRI CTI ON	BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	100.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	100.00	0.00	0.00

* MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0. 10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

LRFD FACTOR ON UNIT FRICTION	LRFD FACTOR ON UNIT BEARING
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
	LRFD FACTOR ON UNI T FRI CTI ON 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1

* COMPUTATI ON RESULT *

PILE	TOTAL SKIN	END	ULTIMATE
PENEIRATION		BEARING	
0 00		1.6	1.6
1.00	0.2	3.0	3.2
2.00	0.6	5.4	6.0
3.00	1.4	8.5	9.9
4.00	2.5	11.3	13.8
5.00	3.9	13.9	17.8
6.00 7.00	5.6	15.9	21.5
8 00	9.9	17.1	24.7
9.00	12.4	18.3	30.6
10.00	14.8	18.3	33.1
11.00	17.6	18.6	36.2
12.00	20.6	18.8	39.4
13.00	23.8	18.8	42.6
14.00	27.3	18.8 10.0	40. I 40. 0
16 00	35.2	18.8	49.9 54 0
17.00	39.5	18.8	58.3
18.00	44.0	18.8	62.8
19.00	48.9	18.8	67.7
20.00	54.0	18.8	72.7
21.00	59.7	18.8	/8.5
22.00	00. I 72 7	18.8 10.0	84.9 01 5
23.00	72.7 79.4	18.8	91.5
25.00	86.2	18.8	105.0
26.00	93.2	18.8	112.0
27.00	100.3	18.8	119. 1
28.00	107.5	18.8	126. 3
		Page 3	

		FPB B3-55 FA. ap7o	
29.00	114.9	18.8	133.7
30.00	122.4	18.8	141.2
31.00	130.1	18.8	148.9
32.00	137.9	18.8	156.7
33.00	145.8	18.8	164.6
34.00	153.9	18.8	172.7
35.00	162.1	18.8	180. 9
36.00	170.4	18.8	189. 2
37.00	178.9	18.8	197.7
38.00	187.5	18.8	206.3
39.00	196.3	18.8	215.1
40.00	205.2	18.8	224.0
41.00	214.2	18.8	233.0
42.00	223.4	18.8	242.2
43.00	232.7	18.8	251.5
44.00	242.1	18.8	260.9
45.00	251.7	18.8	270.5
46.00	261.4	79.6	341.0
47.00	271.3	304.7	576.0
48.00	281.3	529.9	811.2
49.00	305.1	755.1	1060.2
50.00	343.0	980.2	1323.2
51.00	381.4	1041.0	1422.4
52.00	420.3	1041.0	1461.3
53.00	461.4	1041.0	1502.4
54.00	504.7	1041.0	1545.7
55.00	548.6	1041.0	1589.6

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

* COMPUTE LOAD-DI STRI BUTI ON AND LOAD-SETTLEMENT * CURVES FOR AXI AL LOADI NG *

T-Z CURVE NO.	NO. OF POI NTS	DEPTH TO CURVE FT.	LOAD TRANSFER PSI	PILE MOVEMENT IN.
1	10	0. 0000E+00	0.0000E+00 0.6802E-01 0.1360E+00 0.2721E+00 0.4081E+00 0.5442E+00 0.6122E+00 0.6802E+00 0.6802E+00 0.6802E+00	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
2	10	0. 4025E+01	0.0000E+00 0.2267E+00 0.4535E+00 0.9070E+00 0.1360E+01 0.1814E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01

		FPB B3-55_	FA. ap7o	
2	10	0 7058E±01	0. 2041E+01 0. 2267E+01 0. 2267E+01 0. 2267E+01	0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
	10	0. 20005 - 01	0.0000E+00 0.3465E+00 0.6929E+00 0.1386E+01 0.2079E+01 0.3118E+01 0.3465E+01 0.3465E+01 0.3465E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
4	10	0.8000E+01	0.0000E+00 0.3574E+00 0.7148E+00 0.1430E+01 0.2144E+01 0.2859E+01 0.3216E+01 0.3574E+01 0.3574E+01 0.3574E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
5	10	0. 1403E+02	0.0000E+00 0.5715E+00 0.1143E+01 0.2286E+01 0.3429E+01 0.4572E+01 0.5143E+01 0.5715E+01 0.5715E+01 0.5715E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
6	10	0. 1996E+02	0.0000E+00 0.7937E+00 0.1587E+01 0.3175E+01 0.4762E+01 0.6350E+01 0.7143E+01 0.7937E+01 0.7937E+01 0.7937E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
0	10	0.2402E.02	0.0000E+00 0.8908E+00 0.1782E+01 0.3563E+01 0.5345E+01 0.7127E+01 0.8017E+01 0.8908E+01 0.8908E+01 0.8908E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
ō	ĨŬ	U. 34U3E+UZ	0. 0000E+00 0. 1209E+01 0. 2417E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01

		FPB B3-55_F	A. ap7o	
Q	10	0 4796E±02	0. 4835E+01 0. 7252E+01 0. 9669E+01 0. 1088E+02 0. 1209E+02 0. 1209E+02 0. 1209E+02	0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
7		0.47702+02	0. 0000E+00 0. 2472E+01 0. 4944E+01 0. 9888E+01 0. 1483E+02 0. 1978E+02 0. 2225E+02 0. 2472E+02 0. 2472E+02 0. 2472E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
10	10	0. 4800E+02	0. 0000E+00 0. 4510E+01 0. 9019E+01 0. 1804E+02 0. 2706E+02 0. 3608E+02 0. 4059E+02 0. 4510E+02 0. 4510E+02 0. 4510E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
11	10	0. 5003E+02	0.0000E+00 0.5646E+01 0.1129E+02 0.2259E+02 0.3388E+02 0.4517E+02 0.5082E+02 0.5646E+02 0.5646E+02 0.5646E+02	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+01
12	10	0. 5196E+02	0. 0000E+00 0. 5843E+01 0. 1169E+02 0. 2337E+02 0. 3506E+02 0. 4674E+02 0. 5259E+02 0. 5843E+02 0. 5843E+02 0. 5843E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
13	10	0. 5200E+02	0. 0000E+00 0. 6164E+01 0. 1233E+02 0. 2465E+02 0. 3698E+02 0. 4931E+02 0. 5547E+02 0. 6164E+02 0. 6164E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
14	10	0.5603E+02 Page 6	0.6164E+02	U. 2000E+01

		FPB B3-55_FA	. ap7o	
			Ó. 0000E+00	0. 0000E+00
			0. 6405E+01	0.1000E-01
			0. 1281E+02	0.2000E-01
			0. 2562E+02	0.4000E-01
			0. 3843E+02	0.6000E-01
			0. 5124E+02	0.8000E-01
			0. 5765E+02	0.9000E-01
			0. 6405E+02	0. 1000E+00
			0. 6405E+02	0. 5000E+00
			0. 6405E+02	0. 2000E+01
15	10	0. 5996E+02		
			0. 0000E+00	0. 0000E+00
			0. 6405E+01	0.1000E-01
			0. 1281E+02	0.2000E-01
			0. 2562E+02	0.4000E-01
			0. 3843E+02	0.6000E-01
			0. 5124E+02	0.8000E-01
			0. 5765E+02	0.9000E-01
			0. 6405E+02	0. 1000E+00
			0. 6405E+02	0. 5000E+00
			0. 6405E+02	0. 2000E+01

TIP LOAD	TIP MOVEMENT
KIP	IN.
0.0000E+00	0.0000E+00
0.6506E+02	0.9080E-02
0.1301E+03	0.1816E-01
0.2602E+03	0.3632E-01
0.5205E+03	0.2361E+00
0.7807E+03	0.7627E+00
0.9369E+03	0.1326E+01
0.1041E+04	0.1816E+01
0. 1041E+04	0. 3632E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
KIP	IN.	KI P	IN.
0. 1505E+01	0.2410E-03	0.7166E+00	0. 1000E-03
0. 1505E+02	0.2410E-02	0. 7166E+01	0. 1000E-02
0.7523E+02	0. 1205E-01	0. 3583E+02	0.5000E-02
0. 1509E+03	0. 2412E-01	0. 7166E+02	0. 1000E-01
0.6606E+03	0. 1109E+00	0. 2781E+03	0.5000E-01
0. 9541E+03	0. 1895E+00	0. 3432E+03	0. 1000E+00
0. 1262E+04	0. 6240E+00	0. 6509E+03	0. 5000E+00
0. 1457E+04	0. 1146E+01	0.8466E+03	0. 1000E+01
0. 1652E+04	0. 2168E+01	0. 1041E+04	0. 2000E+01

Fayetteville Pedestrian Bridge - South Bent (B-3) HP14x89

Fayetteville Pedestrian Bridge South Bent (B-3) HP14x89

Geotechnical & Environmental Consult Inc Fayetteville Ped Bridge South Bent B-3 R

03-Oct-2017 GRLWEAP Version 2010

Geotechnical & Environmental Consult Inc Fayetteville Ped Bridge South Bent B-3 R

Energy kips-ft	Stroke ft	Blow Count bl/ft	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
2 79	3 00	9999 0	1 13	9 78	385.0
5.18	4.00	9999.0	1.51	13.08	385.0
7.49	5.00	435.7	1.37	16.68	385.0
9.74	6.00	200.8	1.40	19.71	385.0
11.97	7.00	132.4	1.37	22.38	385.0
14.22	8.00	100.1	1.31	24.83	385.0
16.43	9.00	82.1	1.24	27.07	385.0
18.58	10.00	70.7	1.26	29.47	385.0
20.76	11.00	62.3	1.24	31.54	385.0

Geotechnical & Environmental Consult Inc Fayetteville Ped Bridge South Bent B-3 R

Oct 03 2017 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.833 / 1.000

Gain/Loss 1 at Shaft and Toe 0.833 / 1.000

Depth ft	Ultimate E epth Capacity Friction E kips kips k		End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
2.0	70.9	0.2	70.7	7.8	20.379	-3.725	6.38	18.4
4.0	71.6	0.8	70.7	7.9	20.402	-3.681	6.39	18.4
6.0	72.6	1.9	70.7	8.0	20.464	-3.650	6.40	18.3
8.0	74.1	3.3	70.7	8.1	20.523	-3.605	6.42	18.3
10.0	43.0	5.3	37.7	4.0	17.997	-5.704	5.70	20.3
12.0	45.3	7.6	37.7	4.2	18.166	-5.705	5.75	20.1
14.0	48.1	10.4	37.7	4.4	18.406	-5.698	5.81	20.0
16.0	51.3	13.6	37.7	4.7	18.637	-5.668	5.86	19.8
18.0	55.0	17.2	37.7	5.0	18.884	-5.632	5.92	19.6
20.0	59.0	21.3	37.7	5.4	18.981	-5.459	5.94	19.2
22.0	109.7	24.8	84.9	12.5	22.358	-1.845	6.99	17.5
24.0	113.4	28.5	84.9	12.9	22.503	-1.733	7.04	17.4
26.0	117.2	32.3	84.9	13.4	22.616	-1.654	7.09	17.3
28.0	121.2	36.3	84.9	13.9	22.755	-1.554	7.14	17.3
30.0	125.3	40.4	84.9	14.5	22.869	-1.455	7.19	17.2
32.0	129.6	44.8	84.9	14.9	22.972	-1.357	7.23	17.1
34.0	134.1	49.2	84.9	15.4	23.083	-1.356	7.27	17.0
36.0	138.7	53.8	84.9	15.9	23.371	-1.349	7.39	17.0
38.0	143.5	58.6	84.9	16.4	23.476	-1.412	7.44	16.9
40.0	148.4	63.6	84.9	17.0	23.614	-1.388	7.50	16.9
42.0	153.5	68.6	84.9	17.7	23.711	-1.220	7.55	16.8
44.0	158.8	73.9	84.9	18.4	23.819	-0.931	7.60	16.8
46.0	164.2	79.3	84.9	19.1	23.909	-1.123	7.65	16.7
48.0	169.8	84.9	84.9	19.8	24.001	-1.248	7.70	16.6
50.0	443.7	90.0	353.7	96.0	32.762	-1.232	9.61	17.7

Total Continuous Driving Time 15.00 minutes; Total Number of Blows

649 (starting at penetration 2.0 ft)

ATTACHMENT C

SPECIAL PROVISION 523 DYNAMIC PILE TESTING SPECIAL PROVISION 520 PILING FOR LRFD

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

SR 54 MULTI-USE TRAIL & BRIDGE, FAYETTE COUNTY PI NO. 0012878

SECTION 523 - DYNAMIC PILE TESTING

523.1 General Description

The work consists of performing dynamic pile testing using the Pile Driving Analyzer (PDA) to monitor the driving of piles with accelerometer and strain gauges attached to the piles. Piles to be dynamically tested will be identified in the Special Provision or on the Plans. Prior to pile driving, the Engineer will determine production or test piles to be dynamically tested. Perform the dynamic pile testing in accordance with ASTM D4945-12.

Take dynamic measurements during driving of any required piles. Drive the pile as shown in the Special Provisions or on the Plans.

523.2 Materials

Furnish measuring instruments for dynamic pile testing. Attach instruments near the top of the piles with bolts placed in drilled holes. Furnish materials, labor and equipment necessary for installation of the instruments.

523.3 Construction Requirements

Measure wave speed prior to driving piles. Wave speed measurements will not be required for Steel H piles or metal shell piles. When wave speed measurements are performed, place the piles in a horizontal position not in contact with other piles.

Perform dynamic pile testing during driving. Modify the driving to reduce the stress and/or eliminate the damage, should the recommended stress level be exceeded or if damage occurs (determined visually or as indicated by the instrumentation).

Do not exceed the following maximum driving stresses, as determined by the dynamic pile testing:

1. For Steel piles:

0.9 Fy, where Fy = Yield strength of steel

2. For Prestressed Concrete Piles:

Compression:

$$\sigma_{dr} = \left(0.85 f^{\prime}_{o} - f_{ge}\right)$$

Tension in Normal Environments:

$$\sigma_{dr} = \left(0.095 \sqrt{f_{\sigma}^{r}} + f_{pe}^{o} \right)$$

Tension in Severe Corrosive Environments:

Tar = Taalye

where;

 σ_{dr} = maximum allowed driving stress, ksi

f'c= specified minimum 28-day compressive strength of concrete, ksi

fpe= effective prestress in concrete, ksi, (after all losses) at the time of driving taken as

0.78 times the initial prestress force

Re-drive friction piles that do not obtain bearing after a freeze period of a minimum of 24 hours or for a period designated on the Plans, whichever is longer. Reset the gauges if required. Re-strike the pile with a warm hammer until a maximum penetration of 3 inches (76 mm) or 40 blows is reached, whichever occurs first. The Engineer may modify the Pile Driving Objective based on the results of the PDA work.

Provide two weeks' notice prior to the driving of designated piles and cooperate with the Engineer in connection with the performance of Dynamic Pile Testing.

Provide a complete report consisting of but not limited to PDA field monitoring data, results of CAPWAP computer analyses, and recommendations such as pile lengths, hammer fuel setting, and valid driving criteria. Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile. Submit the report electronically in PDF format and the electronic data files of the PDA analysis and CAPWAP to the Geotechnical Bureau and allow seven (7) calendar days for review and approval before proceeding with driving production piles.

523.4 Measurement

The Dynamic Pile Tests performed in accordance with these Specifications will be counted separately for payment. (Refer to plans summary sheet for the required amount of PDA testing.)

523.5 Payment

The Dynamic Pile Test completed and accepted will be paid for at the Contract unit Price. This payment will be full compensation for all costs of complying with this specification, including incidentals, additional work, and any delays incurred in conjunction therewith.

Payment will be made under:

Item No. 523. Dynamic Pile Test_____. Per Each

Office of Materials and Testing

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

SR 54 MULTI-USE TRAIL & BRIDGE, FAYETTE COUNTY PI NO. 0012878

SECTION 520—PILING

Delete Sub-Section 520.3.05.D.1 and substitute the following:

520.3.05.D.1. Determine Driving Resistance

Drive piles in one continuous operation. Determine the driving resistance of the piling based on the method specified in the plans, which will be one of the following methods (a - c):

- a. Upon completion of the dynamic pile testing in accordance with Special Provision Section 523. The pile bearing will be determined by computing the penetration per blow with less than ¼-inch (6-mm) rebound averaged through 12 inches (305 mm) each of penetration. When it is considered necessary by the Engineer, the average penetration per blow may be determined by averaging the penetration per blow through the last 10 to 20 blows of the hammer. In soft material the driving resistance may be determined, at the Engineer's discretion, after delaying driving operations and performing pile restrikes.
- b. Upon completion of the loading test in accordance with Sub-Section 520.3.05.D.2.
- c. Shall not be used when driving pile to hard rock. Using FHWA-modified Gates Formula as provided below:

$$R_{ndr} = 1.75 (E_d)^{0.5} \log_{10} (10N_b) - 100$$
 (kips) U.S units
$$R_{ndr} = 7 (E_d)^{0.5} \log_{10} (10N_b) - 550$$
 (kN) S.I. units

Where:

 R_{ndr} = nominal pile driving resistance measured during pile driving

 E_d = developed hammer energy. This is the kinetic energy in the ram at impact for a given blow. If ram velocity is not measured, it may be assumed equal to the potential energy of the ram at the height of the stroke, taken as the ram weight times the actual stroke (ft-lb for U.S units, kN-m for S.I. units)

 N_b = Number of hammer blows for 1.0 inch of pile permanent set (blows/in)

These resistance formulas apply only when:

- The hammer has a free fall.
- The head of the pile is not broomed, crushed, spalled, or excessively crimped.
- The penetration rate is reasonably uniform.

Determining driving resistance by formula is not a Pay Item. Provide the facilities for determining driving resistance by formula as an incidental part of the work.

Once the driving resistance has been determined by one of the methods noted above, do not continue to drive piles if the Engineer determines that the piles have reached practical refusal. Practical refusal is defined as 20 blows per inch with the hammer operating at the highest setting or setting determined by the Engineer and less than ¹/₄-inch (6-mm) rebound per blow. The Engineer will generally make this determination within 2 inches (51 mm) of driving. However, the Engineer will not approve the continuation of driving at practical refusal for more than 12 inches (305 mm). When the required pile penetration cannot be achieved by driving without exceeding practical refusal, use other penetration aids such as jetting, spudding, predrilling or other methods approved by the Engineer.

d. Wave Equation: Use the Wave Equation Analysis for Piles (WEAP) program to evaluate the suitability of the proposed driving system chosen from the methods noted above (including the hammer, follower, capblock and pile cushions) as well as to estimate the driving resistance to achieve the pile bearing requirements and to evaluate pile driving stresses. Use the WEAP program to show that the hammer is capable of driving to a driving resistance equal 130% (1.3 times) the driving resistance shown in the Plans without overstressing the piling in compression or tension and without reaching practical refusal.

Perform the WEAP analysis with personnel who are experienced in this type work, and have performed this analysis on a minimum of 15 projects. Provide a list of the qualifications and experience of the personnel to perform the WEAP analysis for this Project.

The Engineer may modify the scour resistance shown in the plans if the dynamic pile test is used to determine the actual soil resistance through the scour zone. Also, the Engineer may make modifications in scour resistance when the Contractor proposes drilling and/or jetting to reduce the soil resistance in the scour zone.

A minimum of two weeks prior to beginning any pile driving operations, submit to the Engineer for evaluation and approval the following information on all of the proposed pile driving system(s) to be used on the Project including but not limited to:

- i. Items on Pile Driving Equipment Data Sheet
- ii. Other information on the driving system required by the Engineer

- iii. A WEAP program output indicating the approximate depth or elevation where the pile will achieve the bearing required
- iv. Valid Driving Criteria.

Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile.

If WEAP analyses show that the hammer(s) will overstress the pile, modify the driving system or method of operation as required to prevent overstressing the pile. Resubmit the modified pile driving system information and WEAP program output to the Engineer for re-evaluation. Do not begin pile driving operations until the Engineer has approved the qualifications of the personnel, the WEAP program output, and the pile driving system(s).

Approval of the pile driving system(s) is also based on satisfactory field trials with dynamic pile testing. Obtain approval from the Engineer for the pile driving system(s) based on satisfactory field performance.

If piles require different hammer sizes, the Contractor may elect to drive with more than one size hammer or with a variable energy hammer, provided that the hammer is properly sized and cushioned, will not damage the pile, and will develop the required resistance.

For penetration of weak soils by concrete piles, use thick cushions and/or reduced stroke to control tension stresses during driving.

Office of Materials and Testing

Pile Driving Data Form

Contract ID: PI Number: County	Structure Name: Structure No.: Pile Driving Contractor:								
\square		Manufacturer: Hammer Type:	Model No Serial No						
		Manufacturers Maximum Rated	Energy:	(ft-k)					
$\overline{\mathbf{v}}$	Hammer	Stroke at Maximum Rated Energy	(ft)						
ΓЛ		Range in Operating Energy:	to	(ft-k)					
┙┈└		Range in Operating Stroke:	to	(ft)					
		Ram Weight:		(kips)					
		Modifications:							
	Striker Plate	Weight:(kips) Thickness:(in)	Diameter:	(in)					
		Material 1 Name:	Material 2 Name:						
	Hammer	Area:(in ²)	Area: (in^2)						
	Cushion	Thickness/Plate:(in)	Thickness/Plate:	(in)					
		No. of Plates:	No. of Plates:						
		Total Thickness of Hammer Cus	shion:	(in)					
	Helmet	Weight including inserts:		(kips)					
		Material:							
	Pile	Area:(in ²)	Thickness/Sheet:	(in)					
	Cushion	No. of Sheets:							
		Total Thickness of Pile Cushion	:	(in)					
		Pile Type:							
		Wall Thickness: (in)	Taper:						
		Cross Sectional Area: (in^2)	Weight/Meter:						
	Pile	Ordered Length:		(ft)					
		Driving Resistance:		(kips)					
		Description of Splice:							
		Driving Shoe/Closure Plate Des	cription:						
Submitted By	•		Date:						

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017 Revision No. 2

1. Location	The project is located on Georgia Highway 54 West, near street address 1294 and Piedmont Fayette Hospital, Fayetteville, Fayette County, Georgia. The location is approximately midway between Sandy Creek Road to the east and Veterans Parkway to the west.
2. Geology	The site is located within the Piedmont Physiographic Province of Georgia. Rocks within the Clarkston Formation, described as a sillimanite-garnet- quartz-plagioclase-biotite-muscovite schist interlayered with hornblende- plagioclase amphibolite of Precambrian age underlie the site. The Clarkston Formation is locally intruded in the Tyrone, Peachtree City and Fayetteville area by younger rocks of the Palmetto Granite unit, which is a coarse-grained porphyritic granite.
3. Subsurface Information	The investigation encountered fill materials, residual soils, partially weathered rock (PWR) and auger refusal material. Please see the enclosed Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 and Soil Test Boring Records for specific subsurface conditions at each boring location.
	Below a surfical topsoil or gravel layer, fill was encountered at all boring locations, except B-5, to depths ranging approximately from 3 to 13 feet. The fill was sampled as either loose or medium dense clayey sand.
	Residual soils were initially encountered below the topsoil layer in boring B-5 and from below the fill in the remaining borings. The residual soil profile mainly consists of loose and medium dense silty sand. Some clayey sand and sandy silt were also penetrated in the upper portions of three borings. The residual soils extend to the top of partially weathered rock (PWR) at depths of about 43 and 48 feet, respectively, in borings B-2 and B-3 and to boring termination depths of 20 and 60 feet in the remaining three borings.
	Partially weathered rock was encountered from below the residual soils to auger refusal depths of 48 feet at the location of boring B-2 and 52 feet at B-3.
	Groundwater was encountered in borings B-2, B-3 and B-4, respectively, at depths of 5, 22 and 27 feet below the ground surface at the time of the field investigation. Groundwater was not observed in boreholes B-1 and B-5 at the time of drilling. No 24-hour groundwater measurements were obtained, since all of the boreholes caved at depths ranging from 7 to 9.5 feet below ground.
4. Soil Parameters	Mechanically Stabilized Earth (MSE) retaining walls are planned for support of the bridge approach ramps and abutments. MSE wall foundation soils consist of undisturbed residual soils and existing fill. The residual soils were classified as loose and medium dense silty sand (SM) with some stiff to very stiff sandy silt (ML-MH) and medium dense clayey sand (SC). The existing fill is described as loose or medium dense clayey sand (SC).

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017

4. Soil Parameters (Continued)	<u>Undisturbed Residual Soils/Existing Fill.</u> Standard penetration resistance (N) values in the residual soils ranged from a minimum of 4 to a maximum of 27 blows per foot (bpf), with most values between 10 to 15 bpf. In the fill soils, standard penetration resistances ranged from a minimum of 5 bpf to 17 bpf. Based on correlations with SPT N-values and our previous experience with similar conditions, we recommend the following design parameters for the MSE wall foundation soils:
	Angle internal soil friction angle $(\phi) = 28$ degrees Cohesion value $(c) = 0$ psf Soil Unit Weight $(\gamma) = 115$ pcf Coefficient of Sliding Friction $(\mu) = 0.53$
	Wall Backfill. Backfill in the reinforced zone of the MSE walls should be well-graded granular soils free from organic matter, shale, soft particles or other deleterious materials. The reinforced zone backfill should have a maximum particle size of ³ / ₄ to 1-inch and conform to the gradation limits of 0 to 60 percent passing the No. 40 sieve and 0 to 15 percent passing the No. 200 sieve. The plasticity index should be less than 6. We assume any retained fill soils in the ramps required beyond the reinforced zone will consist of native silty sand residual soils typical of the Piedmont area. The following soil parameters for the MSE wall backfill in the reinforced zone and retained soils are recommended for design:
	Select Reinforced Zone Granular Backfill Angle internal soil friction angle (ϕ) = 34 degrees Cohesion value (c) = 0 psf Soil Unit Weight (γ) = 135 pcf
	Retained Fill - Silty Sand (SM) 98% Standard Proctor MDD Angle internal soil friction angle (ϕ) = 28 degrees Cohesion value (c) = 0 psf Soil Unit Weight (γ) = 124 pcf
	Retained Fill – Silty Sand (SM) 95% Standard Proctor MDD Angle internal soil friction angle (ϕ) = 25 degrees Cohesion value (c) = 0 psf Soil Unit Weight (γ) = 117 pcf
5. Recommendations	Soil Bearing. Based on local experience and correlations with N-values for loose to medium dense silty sand, loose to medium dense clayey sand and stiff sandy silt, a maximum allowable general soil bearing capacity of 4,000 psf is recommended for preliminary design of the MSE walls on this project. Final wall design requires foundation soil bearing calculations based on the foundation and retained soil parameters listed above, considering site geometry, the wall height and foundation width for each wall. A minimum safety factor of 2.5 against a bearing capacity failure is required per AASHTO for flexible earth reinforced walls.

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017

5. Recommendations (Continued)

The provided Mainline Plan and Cross Sections show the proposed MSE walls vary in height up to a maximum of approximately 28 feet, resulting in relatively high applied foundation loading conditions, estimated to range generally from over 3,000 psf to 5,000 psf. If the MSE wall applied foundation pressure in the final design exceeds the maximum allowable design soil bearing capacity, the wall should be constructed to a height equivalent to the allowable bearing pressure, and installation temporarily halted for 30 days. After the 30 day waiting period, the wall may be completed to its final height.

Type II Foundation Backfill Material. Due to the proximity of the groundwater to the bottom of wall elevation at the location of boring B-2, we recommend a minimum 12-inch thick layer of Type II Foundation Backfill Material be placed below the bottom of the wall in the area of boring B-2.

Settlement. Preliminary settlement calculations were performed for the MSE Retaining Wall #1 at the south bridge abutment at about station 142+00, which represents the apparent worse case foundation loading condition due to the height of the wall. At this location the wall is located on the west side of the trail and is approximately 28 feet in height. A 2.0(H):1.0(V) soil slope down to the existing ground supports the trail on the east side. The approximate magnitude of elastic foundation settlement was calculated using soil modulus values estimated from correlations with corrected standard penetration resistances (N_{60}) for the subsurface profile at the location of boring B-3. Two different foundation loading conditions were utilized, one for an applied bearing pressure at the base of the wall using a unit weight of 135 pcf for the select reinforced zone granular backfill and a second using 135 percent of the backfill weight to represent a possible upper limit for the wall loading. These loading conditions result in foundation contact pressures of 3,780 and 5,040 psf, respectively, at the base of the wall beneath the 28-foot high embankment.

Initial settlement calculations were performed for the embankment loads according to the FHWA EMBANK program manual and elastic solutions developed by Poulos and Davis (1978). The settlement values are taken as the summation of individual layer strains due to added stress from the embankment (MSE wall) loads. Calculations using this method show maximum elastic settlements of 14.1 and 18.8 inches for the two loading conditions. These settlement values likely over estimate the actual amount of settlement since the program cannot exactly model the wall geometry and the values represent settlement calculated along the centerline of a long continuous embankment. Actual settlement should be significantly less at the end abutment.

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017

5. Recommendations (Continued)

Settlement was also calculated using an internal elastic settlement program (MSETT), which allows the wall foundation to be modeled as an individual footing and also is capable of calculating settlement at various points within the foundation footprint. Settlement was calculated for a long embankment by this method using the Westergaard stress distribution and embankment cross section geometry generally equivalent to the MSE wall section at the abutment. Maximum total elastic foundation settlements along the centerline of the embankment were calculated at 10.8 inches for the 3,780 psf load and 14.4 inches for 5,040 psf. Settlement values at the abutment (end of the embankment) were found to be 6.3 and 8.4 inches, respectively.

The settlement calculations noted above are attached for reference. Based on our preliminary analysis, we expect total elastic settlement for MSE Retaining Wall #1 at the south bridge abutment will range approximately from 6 to 11 inches, depending upon the actual loading conditions. Settlement of MSE Retaining Wall #1 at the north abutment should be significantly less, since the maximum wall height is only 17 feet and the foundation footprint is smaller. The elastic settlement should represent the major component of total settlement, since the bearing soils are generally granular and very little consolidation settlement is expected.

Settlement Monitoring. An initial waiting period of 30 days is recommended to allow for completion of at least 90 percent of estimated settlement beneath the MSE wall at the bridge end bents. The majority of the settlement should occur during construction of the MSE walls and the amount of settlement remaining after completion of filling should not be significant. We recommend monitoring of MSE wall settlement during construction to confirm the expected performance and determine the final waiting period necessary. Minimal instrumentation to monitor settlement should consist of settlement plates installed at the interface of the wall fill and the existing ground surface.

<u>Restrictions.</u> During MSE wall construction, installation of vertical casing through the reinforced fill is required for subsequent pile installation at the bridge abutments (end bents). Casing will prevent damage to or interference with the MSE wall reinforcement elements.

Larry D.Mullins, P.E.

Prepared By:

Attachments: Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 Key to Symbols and Descriptions Soil Test Boring Records (B-1 through B-5) Laboratory Soil Test Reports Settlement Calculations

N	MAJOR DIVISIONS GROUP SYMBOLS			TYPIC	AL NAMES	Undisturbed Sample Auger Cuttings			;					
			GW	Well gra mixtures	ded gravels, , little or no	gravel - sand fines.	M	Standard Penetration Test or Dynamic Cone Penetration Test			Bulk Sample			
	GRAVELS (More than 50% of coarse fraction is LARGER than the No. 4 sieve size)	GRAVELS (Little or no fines		GP	Poorly gr mixtures	raded gravel , little or no	s or grave - sand fines.		Rock Core			Crandall Samp	ler	
COARSE		GRAVELS WITH FINES		GM	Silty grav	vels, gravel	- sand - silt mixtures.		Dilatometer			Pressure Meter		
GRAINED SOILS		(Appreciable amount of fines)		GC	Clayey g mixtures	ravels, grav	el - sand - clay		Packer		0	No Recovery		
(More than 50% of material is LARGER than		CLEAN		sw	Well gran	ded sands, g es.	ravelly sands, little	⊻	Water Table a	t time of boring	<u>¥</u>	Water Table af	ter 24 hours	
No. 200 sieve size)	More than 50% of	(Little or no fines	s)	SP	Poorly graded sands or gravelly sands,									
,	coarse fraction is	· · · · · · · · · · · · · · · · · · ·			little or n	lo fifies.		4	Cor	relation of Standar	d P	enetration Resist	ince	
	the No. 4 Sieve	the No. 4 Sieve SANDS V		I	SM	Silty san	ds, sand - si	lt mixtures		SAND 8	CPAVEI	sity		CLAV
	Size)	FINES (Annreciable	111					+	No of Blows	Relative Density		No of Blows	Consistency	
		amount of fines)		SC	Clayey s	ands, sand -	clay mixtures.		0 - 4	Very Loose		0 - 2	Very Soft	
					Inorganic	silts and very	fine sands, rock flour,	\uparrow	5 - 10	Loose		3 - 4	Soft	
	SILTS AND CLAYS (Liquid limit LESS than 50)			ML	L silty of cl: with sligh	y of clayey fine sands or clayey silts and			11 - 30	Medium Dense		5 - 8	Firm	
				GT	Inorganic lays of low to medium plasticity,			31 - 50	Dense		9 - 15	Stiff		
EDIE					clays.	eny ciays, sandy ciays, sitry ciays, lean			Over 50	Very Dense		16 - 30	Very Stiff	
GRAINED				OT	T Organic	ganic silts and organic silty clays of						31 - 50	Hard	
SOILS		<u> </u>		low plasticity.							Over 50	Very Hard		
(More than 50% of	SII TS AND CLAYS			ълн	Inorgani	Inorganic silts, micaceous or								
SMALLER than No. 200 sieve					elastic silts.			$\frac{1}{1}$	Correlation of Dynamic Cone Penetration Resistance with Relative Density and Consistency (Piedmont Residual Soils)					
size)	(Liquid limit GI	(Liquid limit GREATER than 50)		СН	clays	j			SAND & GRAVEL			SILT &	CLAY	
			011	Organic	clays of me	fium to high		No. of Blows	Relative Density		No. of Blows	Consistency		
				UH	plasticity	, organic sil	ts.		0 - 4	Very Loose		0 - 2	Very Soft	
THO			<u> </u>		Deateral	-41.1.4.1			5 - 15	Loose		3 - 4	Soft	
HIGHLY UKGANIC SOILS		6 54	PI	reat and	omer nigniy	organic sous.		16 - 30	Medium Dense		5 - 10	Firm		
	ETTI				E311							11 - 30	Stiff	
BOUNDARY CI	<u>BOUNDARY CLASSIFICATIONS</u> : Soils possessing characteristics of two groups are designated by combinations of group symbols.			KEY TO SYMBOLS AND										
SILT OR CLAY Fine Me		ND		GRAVEL Coarse Fine Coarse			DESCRIPTIONS							
		Medium	Coarse			COUNCY DOMIGETS								
No.200 No.40 No.10 No.4 3/4" 3" 12" U.S. STANDARD SIEVE SIZE Reference: The Unified Soil Classification System, Corps of Engineers, U.S. Army Technical Memorandum No				5		ACC		UR						
3-357, Vol. 1. March, 1953 (Revised April, 1960)					1									
CO	NTRAC	TED WITH: <u>GeoSystems Engineering, Inc</u>	2.						BORING NO.: <u>B-1</u>					
------	---------------	--	-------------	-----	------	--------	------------	----	---					
		NAME: <u>Fayetteville Pedestrian Bridge</u>	ing Co	Inc				0	DATE: June 25, 2015					
JOE	<u> </u>	20014.003.14 DRILLER. Gable Drill	ing Co.	mc.	ĸ		JME 33	0						
	ELEV.	DESCRIPTION	DEPTH in	NO	TYPE	SAMPLE	S RECOV	W	NOTES					
	-	TOPSOIL FILL-Medium dense, brown orange red, clayey SAND		1		7-9-8	10							
	- 890 -		5	2		3-5-6	14	-						
-886	-	RESIDUUM-Loose, brown orange red, clayey SAND		3		3-5-5	12	-						
-000	- 885 -	Stiff, yellowish red, sandy SILT (MH)	10	4		4-5-7	18	23	LL=57, PL=45, PI=11					
	-													
	- 880 -	Medium dense, olive gray, silty SAND	15	5		3-5-6	14	-						
	-													
	- 875	Loose, olive gray, silty SAND	20	6		3-5-5	12							
	-	BORING TERMINATED AT 20 FEET							No groundwater encountered a time of boring					
	- 870 -		25											
	-													
	- 865 -		30											
	-													
	- 860 -		35											
	-								BOW-Bottom of Wall#1					
	- 855		40						LL-Liquid Limit PL-Platic Limit PL-Plasticity Index					

) Preside	Engir lential Dri	neering and Consulting Services, In	nc.					Sheet 1 of
nta, GA ce: 404.	30340 .241.8722	2		<u>B(</u>	DRI	NG L	<u>DG</u>	
CON	ITRAC	TED WITH: GeoSystems Engineering, Inc						BORING NO.: B-2
PRO	JECT	NAME: Fayetteville Pedestrian Bridge	DATE: June 25, 2015					
JOB	NO.: _	20014.003.14 DRILLER: Gable Drill	ing Co.	. Inc.	_ R	IG:	CME 550	_ LOGGED BY:Larry
	ELEV.	DESCRIPTION	DEPTH in FEET	NO.	TYPE	SAMPLE BLOWS/6"	S RECOV. W	NOTES
-		\TOPSOIL FILL-Loose, brown orange red, clayey SAND		1		1-2-3	12	
-	- 875	Loose, yellowish brown, clayey SAND	<u>.</u>	2		2-4-6	14	Groundwater encountered at 5
-	- 870	RESIDUUM-Very loose, brown orange, silty SAND		3		2-3-6	12	feet at time of boring
-			10	4		1-2-2	12	
-	- 865	Loose dark vellowish brown silty		-				
-		SAND	15	5		3-3-4	18	
-	- 860			-				
-			20	6		3-4-4	12	
-	- 855	Medium dense, brown orange, silty SAND		-				
-			25	7		6-8-8	12	
-	- 850					5 10 12	19	
-			30	8		5-10-13	18	
-	- 845					7_10_15	19	
-			35	7		1-12-13	10	
-	- 840	Medium dense, brown orange red, silty SAND		10		5-6-8	14	BOW-Bottom of Wall#1
			40	Ļ				

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sh	leet	2	of	2
<u> </u>		_	~	_

OJECT NAME: Fayetteville Pedestrian Bridge DATE:	B-2
3 NO.: 20014.003.14 DRILLER: Gable Drilling Co. Inc. RIG: CME 550 LOGGED BY: ELEV. DESCRIPTION DEPTH PEET SAMPLES NOTE #35 PWR-Very dense, black orange red, partially weathered rock 11 25:50.5" 12 -830 AUGER REFUSAL AT 48 FEET 50 - - - - -825 - - - - - - - - -820 -	e 25, 2015
ELEV. DESCRIPTION Description SAMPLES NOTE -835 PWR-Very dense, black orange red, partially weathered rock	Larry
Purce Description FEET No. Type BLOWsie* RECOV. w NO.	
-835 PWR-Very dense, black orange red, partially weathered rock 11 25-50/5" 12 -830 AUGER REFUSAL AT 48 FEET - - -830 AUGER REFUSAL AT 48 FEET - -820 - - -820 - -820 - -820 - -810 - -810 -	5
audie 45 11 25-50/5" 12	
830 AUGER REFUSAL AT 48 FEET 50 -825 50 -825 - -820 - -820 - -815 - -816 - -810 - -810 -	
-830	
830 AUGER REFUSAL AT 48 FEET 50	
300 AUGER REFUSAL AT 48 FEET 50 50	
-825 -826 -826 -820 -820 -820 -820 -815 -815 -810	
55 820 60 60 815 816 70	
-810	
- 810 - 70	
. 70	
- 805	
80	
-795	
. 85	

Accura 3200 Presi	a Engin idential Dr	neering and Consulting Services, In	nc.		וחר				Sheet 1 of 2
Office: 40	4.241.8722	2		BC	JRI	NG LO			
со	NTRAC	TED WITH: GeoSystems Engineering, Inc					BORING NO.: B-3		
PR	OJECT	NAME: Fayetteville Pedestrian Bridge		.		10.		0	DATE: June 25, 2015
JOI	B NO.:	_20014.003.14 DRILLER:Gable Drill	ing Co.	Inc.	ĸ	IG:	CME 550	0	LOGGED BY: Larry
	ELEV.	DESCRIPTION	DEPTH in EEET	NO	TYPE	SAMPLE	S	w	NOTES
		TOPSOIL		1		2 / 9	12		
	- 890	FILL-Medium dense, reddish brown, clayey SAND				5-4-0	12		
	-							-	
			5	2		4-6-6	14		
	- 885								
	-			3		5-6-5	12		
	-	Loose, reddish brown, clayey SAND							
BOW=882 -	-		10	4		2-3-5	14		
	- 880								
	-								
	-	RESIDUUM-Loose, gray orange, silty						-	
	-	SAND	15	5		2-2-3	14		
	- 875								
	-								
	-	Loose brown orange silty SAND							
	-	Loose, brown brange, sity SAND	20	6		2-2-3	12		
	- 070								
	- 870								
	-		-						feet at time of boring
	-			7		4-4-4	12		
	-		25						
	- 865								
	-								
	-	Medium dense, reddish yellow, silty SAND		8		4-5-11	18		
	-		30		/				
	- 860								
	_								
	-	Loose, brown orange silty SAND		- -		3-5-5	14		
	-		35	É		5-5-5			
	- 855								
									BOW-Bottom of Wall#1
		Medium dense, brown orange red, silty							
	-	SAND	40	10	7	6-9-11	14		
	- 850								
	-	Medium dense, brown orange red, silty							

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722	BORING LOG		Sheet 2 of
CONTRACTED WITH: GeoSystems Engineering, Inc.		BORING NO.:	B-3

JJECI	NAME: Fayetteville Pedestrian Bridge							DATE:	June 2	5, 2015
3 NO.:	20014.003.14 DRILLER: Gable 1	Drilling Co.	Inc	R	IG:	CME 55	0		BY:	Larry
	DESCRIPTION	DEPTH			SAMPLE	S		ļ ,		
ELEV.		FEET	NO.	TYPE	BLOWS/6"	RECOV.	W		NOTES	
	SAND		 				-			
-		45	11		3-7-10	12				
		45								
- 845										
-	PWR-Very dense, orange brown.									
	partially weathered rock	50	12		20-50/4"	12				
		50								
- 840										
-	AUGER REFUSAL AT 52 FEFT									
		55								
- 835										
		60								
- 830										
-										
-		65								
- 825										
		70								
- 820										
		75								
- 815										
		80								
- 810										
-										
_										
		85								

Sheet 2 of 2

a, GA 404	A 30340			BC	DRI	NG LO	C		
		TED WITH: Coosystems Engineering Inc							
		NAME: Eavetteville Pedestrian Bridge	•						DATE · June 25, 2015
IOB		20014 003 14 DRILLER: Gable Drill	ing Co	Inc	R	IG [.] (ME 55	0	LOGGED BY: Larry
с г					_ `		-	0	
	ELEV.	DESCRIPTION	in	NO	TVDE	SAMPLE BLOWS/6"	S RECOV	\A/	NOTES
96		FILL-Gravel	FEEI	NO.	TIFE	BLOWS/0	RECOV.	vv	
-	- 895	FILL-Medium dense, brown orange red, clayey SAND	-	1		2-5-6	12	-	
-		RESIDUUM-Medium dense, brown orange red, clayey SAND	5	2		5-8-14	14	-	
	- 890								
-		Stiff, yellowish red, sandy SILT (ML)		3		3-4-6	12	_	LL=49, PL=41, PI=8
			10	4		3-5-8	18		
	- 885								
+									
ł									
ŀ			15	5	/	3-5-6	14		
	- 880							1	
-		Loose alive grou silty CAND							
-		Loose, onve gray, sitty SAND		6		2-3-4	12	1	
ŀ			20		7			1	
	- 875								
-				7		2-4-4	12	1	
-			25	,	/			-	
╞	- 870								
Ī			¥.						Groundwater encountered at 2
		Medium dense, white brown orange, silty				4.6.9	10	1	leet at time of boring
-		SAND	30	8		4-6-8	18		
	- 865								
ŀ									
-								-	
Ī			35	9		3-6-7	18		
	- 860								
									BOW-Bottom of Wall#2
-									LL-Liquid Limit
ŀ			40	10		3-4-8	14		PL-Platic Limit
ŀ			40		/			1	PI-Plasticity Index
	- 855			1					

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive

3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sheet	2	of	2
-------	---	----	---

JECT	NAME: Favette	eville Pedestria	n Bridge	<i>.</i>						DATE: June	<u>в-4</u> 25. 2015
3 NO.:	20014.003.14	LOGGED BY:	<u>L 23, 2013</u> Larrv								
					1			-0	<u> </u>		Barry
ELEV.		DESCRIPTION		in FFFT	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES	
-	Medium dens		red silty								
-	SAND	e, black blange	ieu, siity	45	11		5-8-10	12			
				45							
- 850											
-											
					12		3 4 7	12			
-				50	12		5-4-7	12			
- 845											
	Medium dens	e, light gray, si	lty SAND		 						
				55	13		4-6-7	14			
- 840											
					14		5-7-7	14			
	BORING TEI	RMINATED at	60 FEET	60							
- 835											
				65							
- 830											
-											
-											
-				70							
- 825											
-				75							
- 820											
				80							
- 815											
-					-						
-					1						
-				95							
				00	1						

Accura	a Engi	neering and Consulting Services, I	nc.						Sheet 1 of 1
3200 Pres Atlanta, G Office: 40	A 30340 4.241.8722	1ve 2		<u>B(</u>	DRI	NG L(<u>DG</u>		
CO PR	NTRAC	CTED WITH: <u>GeoSystems Engineering, Inc</u> NAME: Favetteville Pedestrian Bridge	2.					BORING NO.: <u>B-5</u> DATE: June 25, 2015	
JOI	B NO.:	20014.003.14 DRILLER: Gable Drill	ing Co.	Inc.	R	IG:	CME 55	0	LOGGED BY: Larry
		DECODIDITION	DEPTH			SAMPLE	S		NOTEO
	ELEV.	DESCRIPTION	in FEET	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES
BOW=904 -	- 905	TOPSOIL RESIDUUM-Very stiff to stiff, red, sandy SILT (ML)		1		4-7-16	10	-	
	-		5	2		4-7-8	12	13	LL=48, PL=34, PI=14
	- 900 - -	Medium dense, brown orange red, silty SAND		3		4-8-9	12	-	
	-		10	4		3-5-6	18	-	
	- 895 - -			-					
	-		15	5		4-6-7	14	-	
	- 890 - -			-					
	- - - 885	BORING TERMINATED AT 20 FEET	20	6		4-4-7	12	-	No groundwater encountered at time of boring
	-			-					
	- 880 -								
	- - - 875 -		30	-					
	- - - 870		35						
	-		40						BOW-Bottom of Wall#2 LL-Liquid Limit PL-Platic Limit PI-Plasticity Index
	- 865 -			-					

	Client:	GeoSysten	ns Engineering,	Inc.									
	Project:	Fayettevill	ayetteville Pedestrian Bridge/Walking Trail										
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785						
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh						
	Sample ID:	S-4		Test Date:	08/02/17	Checked By:	MCM						
	Depth :	9.5 ft		Test Id:	286071								
	Test Comm	ent:											
	Visual Desc	ription:	Moist, yellowis	t									
	Sample Cor	mment:											

	Client:	GeoSystems Engineering, Inc.								
	Project:	Fayetteville	e Pedestrian Bri	dge/Walking Ti	rail					
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
g -	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh			
	Sample ID: S-5+S-6 Composite Depth : 14.5-19.5 ft			Test Date:	08/02/17	Checked By:	MCM			
				Test Id:	286072					
Test Comment:										
	Visual Desc	ription:	Moist, olive gray silty sand							
	Sample Cor	mment:								

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayettevill	e Pedestrian Br	idge/Walking T	rail		
nd	Location:	Fayettevill	e, Georgia			Project No:	GTX-306785
II9	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-2+S-3 C	Composite	Test Date:	08/02/17	Checked By:	MCM
	Depth :	4.5-7.0 ft		Test Id:	286073		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, yellowis	sh brown claye	y sand		
	Sample Co	mment:					

Sand/Gravel Hardness : ---

#200

0.075

38

	Client:	GeoSysten	GeoSystems Engineering, Inc.									
	Project:	Fayetteville	ayetteville Pedestrian Bridge/Walking Trail									
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785					
1	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh					
	Sample ID:	S-6		Test Date:	08/02/17	Checked By:	MCM					
	Depth :	19.5 ft		Test Id:	286074							
	Test Comm	ent:										
	Visual Description:		Moist, dark yellowish brown silty sand									
	Sample Cor	mment:										

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 #10 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 81.9 18.1 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.7863 mm D₃₀=0.1472 mm 4.75 100 #4 D₆₀ = 0.3850 mm $D_{15} = N/A$ #10 2.00 99 D₅₀ = 0.2894 mm $D_{10} = N/A$ #20 0.85 88 #40 0.42 63 $C_c = N/A$ $C_u = N/A$ 45 # 60 0.25 **Classification** 30 #100 0.15 <u>ASTM</u> N/A #200 0.075 18 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSyster	GeoSystems Engineering, Inc.							
	Project:	Fayettevill	e Pedestrian Br	idge/Walking T	rail					
ind	Location:	Fayettevill	e, Georgia			Project No:	GTX-306785			
H	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh			
	Sample ID: S-3+S-4 Composite			Test Date:	08/02/17	Checked By:	MCM			
	Depth :	7.0-9.5 ft		Test Id:	286075					
	Test Comm	ent:								
	Visual Description: Moist, reddis			brown clayey	sand					
	Sample Cor	mment:								

	% Cobb	le	% Gravel	Gravel % Sand		% Si	ilt & Clay Size			
	-		2.4		57.6	57.6		40.0		
Sieve Name	Sieve Size, mm Percent Finer		Spec. Percent	Complies	Complies		Coefficients			
						D ₈₅ = 0.79	48 mm	$D_{30} = N/A$		
3/4in	19.00	100				$D_{60} = 0.27$	15 mm	$D_{15} = N/A$		
1/2in	12.50	98			-	$D_{50} = 0.1647 \text{ mm}$		$D_{10} = N/A$		
#4	4.75	98			-					
#10	2.00	96			-	$C_u = N/A$		$C_{C} = N/A$		
#20	0.85	87			-		<u>Class</u>	sification		
#40	0.42	70			-	ASTM	N/A			
# 60	0.25	58			1					
#100	0.15	48				ΔΔSHTO	Silty Soils (1	$A_{-4}(0)$		
#200	0.075	40				1.001110	Sinty Solis (7	(+ (0))		
					_					
					Sand/Grav	Sample/Te	est Description hape :			
						Sand/Grav	vel Hardness	:		

	Client:	GeoSysten	ns Engineering,	Inc.						
	Project:	Fayetteville Pedestrian Bridge/Walking Trail								
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
3	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-8		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	29.5 ft		Test Id:	286076					
	Test Comm	ent:								
	Visual Description:		Moist, reddish	Moist, reddish yellow silty sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #200 #100 3/8in 60 #10 #20 #40 #4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 0.01 0.001 1000 10 1 0.1 Grain Size (mm) % Cobble % Silt & Clay Size % Gravel % Sand 16 83.6 14 8

				1.0			03.0
Sieve Name	Sieve Size, mm	Percen	t Finer	Spec. Percent	(Complies	
3/8in	9.50	10	0				
#4	4.75	9	3				
#10	2.00	9	5				
#20	0.85	8	1				
#40	0.42	5	7				
# 60	0.25	3	5				
#100	0.15	2	1				
#200	0.075	1!	5				

	1 110	
	Coefficients	
D ₈₅ =0.9104 mm	D ₃₀ =0.1935 mm	
D ₆₀ =0.4570 mm	$D_{15} = 0.0761 \text{ mm}$	
D ₅₀ =0.3554 mm	D ₁₀ =N/A	
C _u =N/A	C _c =N/A	

ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSystems Engineering, Inc.									
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail						
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
9	Boring ID: B-4			Sample Type:	bag	Tested By:	twh				
-	Sample ID:	S-3+S-4 C	omposite	Test Date:	08/02/17	Checked By:	MCM				
	Depth :	7.0-9.5 ft		Test Id:	286077						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	t						
	Sample Cor										

Client:	GeoSystems Engineering, Inc.									
Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail						
Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
Boring ID:	B-4		Sample Type:	bag	Tested By:	twh				
Sample ID:	S-7		Test Date:	08/02/17	Checked By:	MCM				
Depth :	24.5 ft		Test Id:	286078						
Test Comm	ent:									
Visual Desc	ription:	Moist, olive gr	ay silty sand							
Sample Cor	mment:									

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 70.8 29.2 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.6957 mm $D_{30} = 0.0792 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.3388 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = 0.2535 \text{ mm}$ $D_{10} = N/A$ #20 0.85 92 68 #40 0.42 $C_c = N/A$ $C_u = N/A$ 50 # 60 0.25 **Classification** 39 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	ent: GeoSystems Engineering, Inc.									
-	Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail						
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
9	Boring ID:	B-4		Sample Type:	bag	Tested By:	twh				
	Sample ID: S-13+S-14 Composite			Test Date:	08/02/17	Checked By:	MCM				
	Depth : 54.5-59.5 ft			Test Id:	286079						
	Test Comment: Visual Description: Moist, light g										
				ay silty sand							
	Sample Cor	mment:									

Particle Size Analysis - ASTM D422 #100 #200 60 #10 #40 #20 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 71.1 28.9 ____ Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 1.4299 mm $D_{30} = 0.0847 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.5754 mm $D_{15} = N/A$ #10 2.00 94 D₅₀ = 0.3948 mm $D_{10} = N/A$ #20 0.85 71 51 #40 0.42 $C_u = N/A$ $C_c = N/A$ # 60 0.25 42 **Classification** 35 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

	Client:	nt: GeoSystems Engineering, Inc.									
	Project: Fayetteville Pedestrian Bridge/Walking Trail										
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
9	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh				
	Sample ID:	S-1+S-2 C	omposite	Test Date:	08/02/17	Checked By:	MCM				
	Depth : 1.0-4.5 ft			Test Id:	286080						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, red san	dy silt							
	Sample Cor	mment:									

Particle Size Analysis - ASTM D422 #100 #200 60 #40 #20 0 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 46.3 53.7 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.4722 mm $D_{30} = N/A$ 4.75 100 #4 D₆₀ = 0.1484 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = N/A$ $D_{10} = N/A$ #20 0.85 98 83 #40 0.42 $C_c = N/A$ $C_u = N/A$ # 60 0.25 68 Classification Sandy Silt (ML) #100 60 0.15 <u>ASTM</u> #200 0.075 54

Sample/Test Description
Sand/Gravel Particle Shape :

AASHTO Clayey Soils (A-7-5 (6))

	Client:	GeoSystems Engineering, Inc.									
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail								
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
3	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh				
	Sample ID:	S-5		Test Date:	08/02/17	Checked By:	MCM				
	Depth :	14.5		Test Id:	286081						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, red silty	/ sand							
	Sample Cor	mment:									

Particle Size Analysis - ASTM D422

	Client:	GeoSystems Engineering, Inc.									
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail								
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785				
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh				
	Sample ID: S-4			Test Date:	08/04/17	Checked By:	MCM				
	Depth :	9.5 ft		Test Id:	286109						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	lt						
	Sample Cor	mment:									

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	B-1	9.5 ft	23	57	46	11	-2.1	Sandy Elastic silt (MH)

Sample Prepared using the WET method 18% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: RAPID Toughness: LOW

	Client:	GeoSystems Engineering, Inc.								
3	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
	Boring ID:	B-4		Sample Type:	bag	Tested By:	n/a			
	Sample ID: S-3+S-4 Composite			Test Date:	08/04/17	Checked By:	MCM			
	Depth :	7.0-9.5 ft		Test Id:	286112					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, yellowis	h red sandy sil	t					
	Sample Cor	mment:								

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3+S-4 Composite	B-4	7.0-9.5 ft	22	49	41	8	-2.4	Sandy Silt (ML)

Sample Prepared using the WET method 19% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

Client:	GeoSyster	GeoSystems Engineering, Inc.							
Project	: Fayettevill	Fayetteville Pedestrian Bridge/Walking Trail							
Locatio	n: Fayettevill	e, Georgia			Project No:	GTX-306785			
Boring	ID: B-5		Sample Type:	bag	Tested By:	twh			
Sample	e ID: S-1+S-2 (Composite	Test Date:	08/04/17	Checked By:	MCM			
Depth :	1.0-4.5 ft		Test Id:	286111					
Test Co	mment:								
Visual I	Description:	Moist, red sa	andy silt						
Sample	Comment								

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-1+S-2 Composite	B-5	1.0-4.5 ft	13	48	34	14	-1.5	Sandy Silt (ML)

Sample Prepared using the WET method 17% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

ELASTIC SETTLEMENT

Project:	SR-54 Multi-Use Trail & Bridge	Date:	8/11/2017
Location:	Fayette County , Georgia	Engineer:	LDM
Analysis:	Elastic settlements		
Description:	Elastic settlements based on moduli interpreted from SPT data from be	oring B-3	

Calculation performed as outlined in FHWA EMBANK user manual. Principle of supersition is used to combine loads from two halves of embankment. Settlement calculated for ten intervals divided evenly over depth of analysis (as input).

Depth of Analysis = 50 feet

<u>[</u>	Dimensio	<u>15</u>
Length, a =	51	feet
Length, b =	57.5	feet
Height, H =	28	feet
Fill, unit weight, γ =	135	pcf
Load, P =	3780	psf

Embankment parameters (Poulos and Davis, 1978).

				Layer displacment, p					
Depth, z	Layer thickness, Δz	N60 Value	Elastic moduli E = 12 X N60	X = 0	X = 14.375	X = 28.75	X = 43.125	X = 57.5	
(ft)	(ft)	(bpf)	(ksf)	in	in	in	in	in	
5	5	12	144	0.788	0.962	1.182	1.404	1.619	
10	5	8	96	1.183	1.384	1.702	2.026	2.316	
15	5	6	72	1.583	1.785	2.178	2.588	2.922	
20	5	6	72	1.590	1.737	2.091	2.469	2.754	
25	5	10	120	0.959	1.018	1.204	1.408	1.555	
30	5	20	240	0.481	0.498	0.578	0.668	0.731	
35	5	13	156	0.741	0.749	0.855	0.975	1.058	
40	5	27	324	0.356	0.352	0.395	0.445	0.479	
45	5	23	276	0.416	0.404	0.446	0.495	0.530	
50	5	100	1200	0.095	0.091	0.099	0.108	0.115	

 Cumulative displacement (in):
 8.194
 8.978
 10.730
 12.587

References: FHWA. (2002). Geotechnical Engineering Circular No. 5: Evaluation of Soil and Rock Properties. FHWA (1993). EMBANK User Manual

Poulos, H.G. and Davis, E.H. (1978). Elastic Solutions for Soil and Rock Mechanics

ELASTIC SETTLEMENT

Project:	SR-54 Multi-Use Trail & Bridge	Date	e:	8/11/2017
Location:	Fayette County , Georgia	Eng	gineer:	LDM
Analysis:	Elastic settlements		_	
Description:	Elastic settlements based on moduli interpreted from SPT data from b	oring B-3		

Calculation performed as outlined in FHWA EMBANK user manual. Principle of supersition is used to combine loads from two halves of embankment. Settlement calculated for ten intervals divided evenly over depth of analysis (as input).

Depth of Analysis = 50 feet

	Dimensions			
Length, a =	51	feet		
Length, b =	57.5	feet		
Height, H =	28	feet		
Fill, unit weight, γ =	180	pcf		
Load, P =	5040	psf		

Embankment parameters (Poulos and Davis, 1978).

14.307

16.782

				Layer displacment, p				
Depth, z	Layer thickness, Δz	N60 Value	Elastic moduli E = 12 X N60	X = 0	X = 14.375	X = 28.75	X = 43.125	X = 57.5
(ft)	(ft)	(bpf)	(ksf)	in	in	in	in	in
5	5	12	144	1.050	1.283	1.577	1.872	2.159
10	5	8	96	1.578	1.845	2.270	2.702	3.089
15	5	6	72	2.111	2.379	2.904	3.451	3.896
20	5	6	72	2.121	2.316	2.787	3.292	3.673
25	5	10	120	1.279	1.357	1.606	1.878	2.073
30	5	20	240	0.642	0.663	0.771	0.891	0.975
35	5	13	156	0.989	0.998	1.140	1.300	1.410
40	5	27	324	0.475	0.470	0.527	0.593	0.639
45	5	23	276	0.555	0.539	0.594	0.660	0.707
50	5	100	1200	0.127	0.121	0.131	0.144	0.153

Cumulative displacement (in): 10.925 11.971

References: FHWA. (2002). Geotechnical Engineering Circular No. 5: Evaluation of Soil and Rock Properties.

FHWA (1993). EMBANK User Manual

Poulos, H.G. and Davis, E.H. (1978). Elastic Solutions for Soil and Rock Mechanics

GEOSYSTEMS ENGINEERING FOOTING SETTLEMENT PROGRAM

SR-54 MULTI-USE TRAIL & BRIDGE STA 142+00 WESTERGAARD SETTLEMENT BORING B-3 135PCF

STRUCTURAL DATA

FOOTING NUMBER: 1

FOOTING LENGTH: 49.0 FT FOOTING WIDTH: 100.0 FT FOOTING DEPTH: 3.0 FT LOAD: 18522.00 KIPS SURFACE BEARING PRESSURE: 3780.0 PSF X COORDINATE OF CENTER: 34.5 Y COORDINATE OF CENTER: 60.0

SOIL DATA

NUMBER OF LAYERS: 10 DEPTH TO WATER: 21.0 FT

LAYER NUMBER 1

DEPTH TO BOTTOM OF LAYER: 5.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 144000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 2

DEPTH TO BOTTOM OF LAYER: 10.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 96000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER .3

DEPTH TO BOTTOM OF LAYER: 15.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 4

DEPTH TO BOTTOM OF LAYER: 20.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 5

DEPTH TO BOTTOM OF LAYER: 25.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 120000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 6

DEPTH TO BOTTOM OF LAYER: 30.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 240000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 7

DEPTH TO BOTTOM OF LAYER: 35.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 156000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 8

DEPTH TO BOTTOM OF LAYER: 40.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 324000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 9

DEPTH TO BOTTOM OF LAYER: 45.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 276000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 10

DEPTH TO BOTTOM OF LAYER: 50.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 1200000. PSF UNIT WEIGHT: 180.0 PSF

****WESTERGAARD STRESS DISTRIBUTION *****

PREDICTED SETTLEMENT, POINT NUMBER 1 COORDINATES: X= 35. Y= 60.

STANDARD WESTERGAARD

MODIFIED WESTERGAARD

LAYER CUMULATIVE	INITIAL FINAL	FINAL SUBLAYER	SUBLAYER CUMUI	LATIVE
DEPTH	STRESS	STRESS	SETTLEMENT	
SETTLEMENT	STRESS	SETTLEMENT	SETTI	LEMENT
(FT)	(PSF)	(PSF)	(IN)	
(IN)	(PSF)	(IN)	(IN)	
********	* * * * * * * * * * *			
********	* * * * * * * * * * * * * * * * *	******		
* * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		
4.9	882.00	4515.19	.061	
.617	4511.68	.060	.617	
TOTAL LAYER	<pre>{</pre>	SETTLEMENT*****	** .617	*******
.01/		.01/	.01/	
9.7	1755.00	5019.08	.204	
2.764	5004.36	.203	2.757	
	-			
TOTAL LAYEF	R 2 , CUMULATIVE	SETTLEMENT*****	** 2.146	******
2./64		2.140	2.151	
14.7	2655.00	5557.28	.242	
5.316	5563.79	.242	5.307	
TOTAL LAYEF	R 3 , CUMULATIVE	SETTLEMENT*****	** 2.553	******

19.83555.007.5806150.14 3555.00 6124.23 .214 .216 7.585 TOTAL LAYER 4 , CUMULATIVE SETTLEMENT******* 2.264 ******* 24.7 4221.00 6491.08 .114
 24.7
 4221.00

 8.781
 6523.58
 .115 8.801 TOTAL LAYER 5 , CUMULATIVE SETTLEMENT******** 1.201 ******* 29.74809.006814.949.3116853.63.051 .050 9.341 .530 ******* TOTAL LAYER 6 , CUMULATIVE SETTLEMENT******* 34.8 10.033 5397.00 7172.20 .068 10.078 7214.20 .070 39.75985.007559.8010.3417598.83.030 .029 .030 10.393 TOTAL LAYER 8 , CUMULATIVE SETTLEMENT******* .308 ******* 6573.007974.198018.20.031 44.8 10.662 .030 8018.20 10.723 TOTAL LAYER 9 , CUMULATIVE SETTLEMENT******* .321 ******* 7161.00 8411.82 49.8 .006 10.728 8415.63 .006 10.790 TOTAL LAYER10 , CUMULATIVE SETTLEMENT******** .066 ******* PREDICTED SETTLEMENT, POINT NUMBER 2 COORDINATES: X= 35. Y= 11. STANDARD WESTERGAARD

MODIFIED WESTERGAARD

4

LAYER CUMULATIVE DEPTH SETTLEMENT	INITIAL FINAL STRESS STRESS	FINAL SUBLAYER STRESS SETTLEMENT	SUBLAYER CUMU SETTLEMENT SETT	LATIVE LEMENT
(FT) (IN) *********** **********	(PSF) (ESF) ********** *************************	(PSF) (IN) ********************	(IN) (IN) *	
4.9 .510	882.00 3457.36	3472.64 .043	.043 .508	
TOTAL LAYER .510 *****	1 ,CUMULATIVE	SETTLEMENT**** ** .508 *****	*** .510 *** .508	******
9.7 1.842	1755.00 3636.48	3650.28 .118	.118 1.831	
TOTAL LAYER 1.842 ****	2 ,CUMULATIVE	SETTLEMENT**** *** 1.322 ****	*** 1.331 **** 1.831	* * * * * * * *
14.7 3.287	2655.00 4280.01	4275.82 .135	.135 3.273	
TOTAL LAYER 3.287 ****	3 ,CUMULATIVE	SETTLEMENT*****	*** 1.445 **** 3.273	* * * * * * * *
19.8 4.543	3555.00 4991.68	4977.05 .120	.119 4.538	
TOTAL LAYER 4.543 ****	4 ,CUMULATIVE	SETTLEMENT*****	*** 1.256 **** 4.538	*****
24.7 5.208	4221.00 5497.53	5480.29 .064	.063 5.211	
TOTAL LAYER 5.208 ****	5 ,CUMULATIVE	SETTLEMENT*****	*** .665 **** 5.211	* * * * * * * *
29.7 5.504	4809.00 5950.79	5930.94 .029	.028 5.512	
TOTAL LAYER 5.504 ****	6 ,CUMULATIVE	SETTLEMENT*****	*** .295 **** 5.512	* * * * * * * *
34.8 5.910	5397.00 6423.07	6401.92 .039	.039 5.926	

· · · · · ·

TOTAL LAYER 7 , CUMULATIVE SETTLEMENT******* .406 ******* 39.7 5985.00 6889.69 .017 6.085 6909.14 .017 6.105 .176 ******* TOTAL LAYER 8 ,CUMULATIVE SETTLEMENT******* 7391.42 44.8 6573.00 .018 6.272 7413.26 .018 6.296 .186 ******* TOTAL LAYER 9 , CUMULATIVE SETTLEMENT******* 49.8 7161.00 7904.79 .004 6.310 7906.69 6.335 .004 TOTAL LAYER10 ,CUMULATIVE SETTLEMENT******* .039 *******

→

GEOSYSTEMS ENGINEERING FOOTING SETTLEMENT PROGRAM

SR-54 MULTI-USE TRAIL & BRIDGE STA 142+00 WESTERGAARD SETTLEMENT BORING B-3 180PCF

STRUCTURAL DATA

FOOTING NUMBER: 1

FOOTING LENGTH: 49.0 FT FOOTING WIDTH: 100.0 FT FOOTING DEPTH: 3.0 FT LOAD: 24696.00 KIPS SURFACE BEARING PRESSURE: 5040.0 PSF X COORDINATE OF CENTER: 34.5 Y COORDINATE OF CENTER: 60.0

SOIL DATA

NUMBER OF LAYERS: 10 DEPTH TO WATER: 21.0 FT

LAYER NUMBER 1

DEPTH TO BOTTOM OF LAYER: 5.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 144000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 2

DEPTH TO BOTTOM OF LAYER: 10.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 96000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 3

DEPTH TO BOTTOM OF LAYER: 15.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 4

DEPTH TO BOTTOM OF LAYER: 20.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 5

DEPTH TO BOTTOM OF LAYER: 25.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 120000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 6

DEPTH TO BOTTOM OF LAYER: 30.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 240000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 7

DEPTH TO BOTTOM OF LAYER: 35.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 156000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 8

DEPTH TO BOTTOM OF LAYER: 40.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 324000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 9

DEPTH TO BOTTOM OF LAYER: 45.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 276000. PSF UNIT WEIGHT: 180.0 PSF

layer number 10

DEPTH TO BOTTOM OF LAYER: 50.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 1200000. PSF UNIT WEIGHT: 180.0 PSF

****WESTERGAARD STRESS DISTRIBUTION *****

PREDICTED SETTLEMENT, POINT NUMBER 1 COORDINATES: X= 35. Y= 60.

STANDARD WESTERGAARD

MODIFIED WESTERGAARD

LAYER	INITIAL	FINAL	SUBLAYER	LATIVE
CUMULATIVE	FINAL	SUBLAYER	CUMUI	
DEPTH	STRESS	STRESS	SETTLEMENT	
SETTLEMENT	STRESS	SETTLEMENT	SETTI	
(FT) (IN) ********** ***********	(PSF) (PSF) ********* **************************	(PSF) (IN) ************************************	(IN) (IN) *	
4.9	882.00	5726.26	.081	
.823	5721.57	.081	.822	
TOTAL LAYER .823 *****	1 ,CUMULATIVE	SETTLEMENT***** * .822 *****	*** .823 *** .822	* * * * * * * *
9.7	1755.00	6107.10	.272	
3.685	6087.47	.271	3.676	
TOTAL LAYER 3.685 ****	2 ,CUMULATIVE	SETTLEMENT***** ** 2.854 ****	*** 2.862 **** 3.676	* * * * * * * *
14.7	2655.00	6524.70	.322	
7.088	6533.38	.323	7.076	
TOTAL LAYER	3,CUMULATIVE	SETTLEMENT****	*** 3.403	******

19.83555.0010.1067015.19 3555.00 6980.63 .285 .288 10.114 TOTAL LAYER 4 , CUMULATIVE SETTLEMENT******* 3.018 ******* 4221.00 7247.77 24.7 .151 11.708 7291.11 .154 11.735 TOTAL LAYER 5 , CUMULATIVE SETTLEMENT******* 1.601 ******* 11.708 ******************* 1.621 ******* 11.735 29.7 12.415 4809.00 7483.59 .067 7535.17 .068 12.454 TOTAL LAYER 6 ,CUMULATIVE SETTLEMENT******* .707 ******* 34.8 13.377 5397.00 7763.93 .091 .093 7819.94 13.437 TOTAL LAYER 7 , CUMULATIVE SETTLEMENT******* .962 ******* 39.7 5985.00 8084.73 .039 13.788 8136.77 .040 13.858 .411 ******* TOTAL LAYER 8 , CUMULATIVE SETTLEMENT******* 44.8 14.216 6573.00 8441.25 .041 8499.93 14.298 .042 TOTAL LAYER 9 , CUMULATIVE SETTLEMENT******* .428 ******* 7161.00 8828.76 49.8 .008 14.304 8833.85 .008 14.387 TOTAL LAYER10 , CUMULATIVE SETTLEMENT******** .088 ******* PREDICTED SETTLEMENT, POINT NUMBER 2 COORDINATES: X= 35. Y= 11.

MODIFIED WESTERGAARD

4

STANDARD WESTERGAARD

TNTTTAL FINAL SUBLAYER LAYER CUMULATIVE FINAL SUBLAYER CUMULATIVE DEPTH STRESS STRESS SETTLEMENT SETTLEMENT STRESS SETTLEMENT SETTLEMENT (FT) (PSF) (PSF) (IN) (PSF) (IN) (IN) (IN) ***** 4.9 882.00 4336.19 .058 .680 4315.82 .057 .678 .680 ******* TOTAL LAYER 1 , CUMULATIVE SETTLEMENT******* .678 9.7 1755.00 4282.04 .158 2.455 4263.64 .157 2.441 TOTAL LAYER 2 , CUMULATIVE SETTLEMENT******* 1.775 ******* 2.455 *********************** 1.763 ******** 2.441 14.7 4.382 2655.00 4816.09 .180 4821.69 4.364 .181 TOTAL LAYER 3 , CUMULATIVE SETTLEMENT******* 1.927 ******* 4.382 ************************ 1.923 ******** 4.364 19.8 .158 5451.07 3555.00 5470.57 6.057 .160 6.051 TOTAL LAYER 4 , CUMULATIVE SETTLEMENT******* 1.675 ******* 4221.00 5900.05 24.7 .084 6.944 5923.04 .085 6.948 .887 ******* TOTAL LAYER 5 ,CUMULATIVE SETTLEMENT******* 29.7 4809.00 6304.92 .037 7.338 .038 7.349 6331.39 .394 ******* TOTAL LAYER 6 ,CUMULATIVE SETTLEMENT******* 5397.00 6736.89 34.8 .052 6765.09 7.901 7.880 .053

TOTAL LAYER 7.880 *****	7 ,CUMULATIVE SET:	ILEMENT******* .552 *******	.542 7.901	******
39.7 8.114	5985.00 72 7217.18	191.25 .023	.022 8.140	
TOTAL LAYER 8.114 *****	8 ,CUMULATIVE SET:	LEMENT******* .239 *******	.234 8.140	******
44.8 8.362	6573.00 76 7693.35	564.23 .024	.024 8.394	
TOTAL LAYER 8.362 *****	9 ,CUMULATIVE SET:	LEMENT******* .254 *******	.248 8.394	*****
49.8 8.414	7161.00 83 8155.25	152.72 .005	.005 8.447	
TOTAL LAYER1 8.414 *****	.0 ,CUMULATIVE SET:	LEMENT******* .052 *******	.052 8.447	*****

 \rightarrow

.

٢

. .
Bridge Foundation Investigation (LRFD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 October 5, 2017 Revision No. 2

LOCATION	Georgia Highway 54 West, near street address 1294 and Piedmont Fayette Hospital, Fayetteville, Fayette County, Georgia. The location is approximately midway between Sandy Creek Road to the east and Veterans Parkway to the west.
	GENERAL INFORMATION
GEOLOGIC FORMATION	Piedmont Physiographic Province - The Clarkston Formation, described as a sillimanite-garnet-quartz-plagioclase-biotite- muscovite schist interlayered with hornblende-plagioclase amphibolite of Precambrian age underlies the site. The Clarkston Formation is locally intruded in the Tyrone, Peachtree City and Fayetteville area by younger rocks of the Palmetto Granite unit, which is a coarse-grained porphyritic granite.
SUBSURFACE FEATURES	The investigation encountered fill materials, residual soils, partially weathered rock (PWR) and auger refusal material. Please see the enclosed Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 and Soil Test Boring Records for specific subsurface conditions at each boring location.
	Below a surfical topsoil or gravel layer, fill was encountered at all boring locations, except B-5, to depths ranging approximately from 3 to 13 feet. The fill was sampled as either loose or medium dense clayey sand.
	Residual soils were initially encountered below the topsoil layer in boring B-5 and from below the fill in the remaining borings. The residual soil profile mainly consists of loose and medium dense silty sand. Some clayey sand was also penetrated in the upper portions of three borings. The residual soils extended to the top of partially weathered rock (PWR) at depths of about 43 and 48 feet, respectively, in borings B-2 and B-3 and to boring termination depths of 20 and 60 feet in the remaining three borings.
	Partially weathered rock was encountered from below the residual soils to auger refusal depths of 48 feet at the location of boring B-2 and 52 feet at B-3.
	Groundwater was encountered in borings B-2, B-3 and B-4, respectively, at depths of 5, 22 and 27 feet below the ground surface at the time of the field investigation. Groundwater was not observed in boreholes B-1 and B-5 at the time of drilling. No 24-hour groundwater measurements were obtained, since all of the boreholes caved at depths ranging from 7 to 9.5 feet below ground.
SITE CLASSIFICATION	We recommend a site class of D per AASHTO LRFD 3.10.3.1.

1.0 -- FOUNDATION RECOMMENDATIONS

Bents	Pile Bent (Type)
North End Bent 2	HP 14x89 (50 ksi)
(Boring B-4)	III 14X07 (50 KSI)
South End Bent 1	HP 1/1x80 (50 kgi)
(Boring B-3)	11F 14x89 (50 KSI)

1.1 -- PILE PROPERTIES

					Maximum	
			Nominal		Factored	
			Compression	Nominal	Structural	
			Stress	Tension Stress	Resistance	
Pi	le Type	Pile Size (in)	(ksi)	(ksi)	(kips)	
HP	(50 ksi)	14 x 89	45.0	45.0	653	

1.2 -- DESIGN LOADS

_	Maximum Factored Strength Limit State Load	Maximum Factored Service Limit State Load	Factored Extreme Event I Limit State Load
Bents	(kips)	(kips)	(kips)
North End Bent 2 (Boring B-4)	250	175	Not Provided
South End Bent 1 (Boring B-3)	250	175	Not Provided

2.0 -- FOUNDATION LOADS

2.1 -- PILE FOUNDATION LOADS

Bents	Pile Type	Size (in)	Down Drag (kips)	Scour (Kips)	Driving Resistance (kips)
North End Bent 2 (Boring B-4)	HP	14x89	N/A	N/A	385
South End Bent 1 (Boring B-3)	HP	14x89	N/A	N/A	385

	3.0 FOUN	DATION ELEV	ATIONS
	Rents	Minimum Tin	Estimated Tin
-	North End Bent 2 (Boring B-4)	855	836
	South End Bent 1 (Boring B-3)	843	840
	4.0 (JENERAL NO	TES
Elevations	All foundation ele shown on the enc were established l referenced on Dra	evations are based losed Soil Test Bo by survey using Co twing No. 13-009	on the soil test boring elevations as ring Records. The boring elevations ontrol Points D-25 and D-26, as of the project plans.
Waiting Period	An initial waiting of at least 90 perc beneath the MSE occur during cons remaining after co recommend moni confirm the expect necessary. Minin settlement plates is ground surface.	period of 30 days ent of an estimate wall end bents. T struction of the MS ompletion of filling toring of MSE wa eted performance a nal instrumentation installed at the inte	is recommended to allow for completion d 6 to 11 inches of settlement (total) he majority of the settlement should SE walls and the amount of settlement g should not be significant. We Il settlement during construction to and determine the final waiting period a to monitor settlement should consist of erface of the wall fill and the existing
Staged Construction	Staged construction prevent possible of soils under the Mill least 90 percent of wall construction, required for subsection interference with	on for pile installat lown-drag loads of SE wall loads. Pil f the anticipated se , installation of ver equent pile installa the MSE wall rein	tion through the end bents is required to n the piles from settlement of the in-situ es should not be installed until after at ettlement has occurred. During MSE rtical casing through the reinforced fill is tion. Casing will prevent damage to or forcement elements.
Obstructions	Due to the erratic unexpected obstru investigated.	weathering of the actions are possible	rocks within this geologic setting, some e between the borings or in areas not
As Built Foundation Information	The as built found Engineering Bure	lation information au upon completic	should be forwarded to the Geotechnical on of the foundation system.

4.1 -- PILE FOUNDATION NOTES

PDO	Driving resistance after minimum tip elevations are achieved in conjunction with Special Provision 520 Piling for LRFD and Special Provision 523 Dynamic Pile Testing. Perform one PDA test at Bent 1 (South-Boring B-3) and Bent 2 (North-Boring B-4)
Nominal Bearing Resistance of Single Pile	Driving resistance is based on the following field verification method and resistance factor φ_{dyn} per AASHTO LRFD 2014 (10.5.5.2.3-1):
	Resistance Determination MethodResistance FactorDriving criteria established by dynamic testing of at least two piles per site condition, but no less than 2% of the production piles.0.65
Freeze Bearing	Piles should not be overdriven at this site. If dynamic bearing has not been achieved by 2 feet above the estimated tip elevation, pile driving should be stopped for a minimum 24 hours and re-started with a warm hammer to check for "freeze" bearing.
Piles Driven to Hard Rock	The nominal resistance of piles driven to point bearing on hard rock where pile penetration into the rock formation is minimal is controlled by the structural limit state. The Nominal Driving Resistance should not exceed the Factored Structural Resistance. Dynamic pile measurements should be used to monitor for pile damage.
Drivability	A drivability analysis has been completed on the proposed piles to about their respective estimated tips using a DELMAG D 16-32 pile hammer.
Down-drag Protection	To avoid inducing down-drag loads into the piles from potential settlement of compressible layers during construction of the MSE wall, we recommend that piles at Bent 1 (South) and Bent 2 (North) be protected from down-drag by delaying pile installation until after at least 90 percent of the anticipated settlement has occurred.
Pile Casing through MSE Reinforcement Zone	Installation of vertical casing through the MSE reinforced fill is required for subsequent pile installation in order to prevent damage to or interference with the MSE wall reinforcement elements.

Bridge Foundation Investigation (LRFD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 October 5, 2017 Revision No. 2

5.0 – QA / QC

King Mulli

Prepared By: Larry D. Hullins, P.E.

Attachment A

Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 Key to Symbols and Descriptions Soil Test Boring Records (B-1 through B-5) Laboratory Soil Test Reports

Attachment B

APILE & GRLWEAP Calculations Bent 2 (South-Boring B-3)

Attachment C

Special Provision 523 Dynamic Pile Testing Special Provision 520 Piling for LRFD

ATTACHMENT A

BORING LOCATIONS – MAINLINE PLAN DRAWING NOS. 13-08 & 13-09 KEY TO SYMBOLS AND DESCRIPTIONS SOIL TEST BORING RECORDS (B-1 THROUGH B-5) LABORATORY SOIL TEST REPORTS

N	AJOR DIVISION	IS	GR SYN	LOUP (BOLS		TYPIC	AL NAMES		Undisturbed S	ample		Auger Cuttings	;		
		CLEAN		GW	Well grad mixtures,	led gravels, little or no	gravel - sand fines.	X	Standard Pener Dynamic Cone	tration Test or Penetration Test		Bulk Sample			
	GRAVELS (More than 50% of	GRAVELS (Little or no fines		GP	Poorly gr mixtures	aded gravel little or no	s or grave - sand fines.		Rock Core			Crandall Samp	ler		
COARSE	LARGER than the No. 4 sieve size)	RGER than the o. 4 sieve size) WITH FINES		GM	Silty grav	els, gravel	- sand - silt mixtures.		Dilatometer			Pressure Meter	-		
GRAINED SOILS		(Appreciable amount of fines)		GC	Clayey g mixtures	ravels, gravo	el - sand - clay		Packer		0	No Recovery			
(More than 50% of material is LARGER than	CANTYO	CLEAN		sw	Well grad or no fine	Well graded sands, gravelly sands, little or no fines.		⊻	∇ Water Table at time of boring		<u>¥</u>	Water Table af	ter 24 hours		
No. 200 sieve size)	More than 50% of	(Little or no fines	s)	SP	Poorly gr	rly graded sands or gravelly sands,									
,	coarse fraction is				little or n	o fines.		4	Cor	relation of Standar	d P	enetration Resist	ance		
	the No. 4 Sieve	SANDS WITH	I	SM	Silty san	ds, sand - sil	t mixtures		CANTO P		sity T	SILT & CLAY			
	Size)	FINES	111					+	No of Blows	Relative Density		No of Blows	Consistency		
		amount of fines)		SC	Clayey sands, sand - clay mixtures.		-	0 - 4	Very Loose	\vdash	0 - 2	Very Soft			
		1			Inorganic	silts and very	fine sands, rock flour,	\uparrow	5 - 10	Loose	-	3 - 4	Soft		
				ML	silty of cla with slight	yey fine sand plasticity.	s or clayey silts and		11 - 30	Medium Dense		5 - 8	Firm		
	SILTS AN	D CLAYS		with slight plasticity. Inorganic lays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.			31 - 50	Dense		9 - 15	Stiff				
ETNIE	(Liquid limit LESS than 50)			CL Inorganic lays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.			Over 50	Very Dense		16 - 30	Very Stiff				
GRAINED				OT	clays. Organic silts and organic silty clays of low plasticity.						31 - 50	Hard			
SOILS					Organic silts and organic silty clays of low plasticity. Inorganic silts, micaceous or						Over 50	Very Hard			
(More than 50% of				мн	Inorganio	e silts, nucae	eous or ndu or silty soils								
SMALLER than No. 200 sieve	lore than 50% of material is MALLER than No. 200 sieve sieve SILTS AND CLAYS				Initiationaccous line sandy of sitty soils, elastic silts. Inorganic clays of high plasticity, fat			╡	Correlation of Dynamic Cor Relative Density and Consist			e Penetration Resistance with ncy (Piedmont Residual Soils)			
size)	(Liquid limit GI	EATER than 50)		СН	CH clays		,		SAND & GRAVEL			SILT & CLAY			
	(Liquid limit GREATER than 50)					OT	Organic	clays of med	lium to high		No. of Blows	Relative Density		No. of Blows	Consistency
					plasticity	Organic clays of medium to high plasticity, organic silts.			0 - 4	Very Loose		0 - 2	Very Soft		
HICI			100 2	рт	Pest and	other highly	r organic soils		5 - 15	Loose		3 - 4	Soft		
100		JOIL 3	6 50		1 (4) 400	oner ngniy	organic sours.		16 - 30	Medium Dense		5 - 10	Firm		
	FILL				Fill							11 - 30	Stiff		
			\otimes					1		11. da an da a da ante a ser da ante a s					
BOUNDARY CI	LASSIFICATION	<u>S</u> : Soils possessin combinations	ng char of grou	acteristi p symbo	cs of two ols.	groups are	designated by		KEY	Y TO SYI	М	BOLS A	AND		
SILT	COR CLAY	SAI	ND	1	GR.4	VEL	Cobbles Boulders			DESCRI	[P	TIONS			
		Fine N	Medium	Coarse	Fine	Coarse									
Bafarman The T	No.	0.200 No.40 U.S. STAN) N DARD	Io.10 No SIEVE	size	/4 ^m 3	" 12"		e r	ACC		UR			
3-357 Vol. 1. Ma	arch, 1953 (Revise	d April 1960)	corps (u cuân	ccis, U.S.	Aimy rec	annear ivientoranoum N	1	Mas						

CO	NTRAC	TED WITH: <u>GeoSystems Engineering, Inc</u>	2.						BORING NO.: <u>B-1</u>
		NAME: <u>Fayetteville Pedestrian Bridge</u>	ing Co	Inc				0	DATE: June 25, 2015
JOE	<u> </u>	20014.003.14 DRILLER. Gable Drill	ing Co.	mc.	ĸ		JME 33	0	
	ELEV.	DESCRIPTION	DEPTH in	NO	TYPE	SAMPLE	S RECOV	W	NOTES
	-	TOPSOIL FILL-Medium dense, brown orange red, clayey SAND		1		7-9-8	10		
	- 890 -		5	2		3-5-6	14	-	
-886	-	RESIDUUM-Loose, brown orange red, clayey SAND		3		3-5-5	12	-	
-000	- 885 -	Stiff, yellowish red, sandy SILT (MH)	10	4		4-5-7	18	23	LL=57, PL=45, PI=11
	-								
	- 880 -	Medium dense, olive gray, silty SAND	15	5		3-5-6	14	-	
	-								
	- 875	Loose, olive gray, silty SAND	20	6		3-5-5	12		
	-	BORING TERMINATED AT 20 FEET							No groundwater encountered a time of boring
	- 870 -		25						
	-								
	- 865 -		30						
	-								
	- 860 -		35						
	-								BOW-Bottom of Wall#1
	- 855		40						LL-Liquid Limit PL-Platic Limit PL-Plasticity Index

) Preside	Engir lential Dri	neering and Consulting Services, In	nc.					Sheet 1 of
nta, GA ce: 404.	30340 .241.8722	2		<u>B(</u>	DRI	NG L	<u>DG</u>	
CON	ITRAC	TED WITH: GeoSystems Engineering, Inc						BORING NO.: B-2
PRO	JECT	NAME: Fayetteville Pedestrian Bridge						DATE: June 25, 2015
JOB	NO.: _	20014.003.14 DRILLER: Gable Drill	ing Co.	. Inc.	_ R	IG:	CME 550	_ LOGGED BY:Larry
	ELEV.	DESCRIPTION	DEPTH in FEET	NO.	TYPE	SAMPLE BLOWS/6"	S RECOV. W	NOTES
-		\TOPSOIL FILL-Loose, brown orange red, clayey SAND		1		1-2-3	12	
-	- 875	Loose, yellowish brown, clayey SAND	<u>.</u>	2		2-4-6	14	Groundwater encountered at 5
-	- 870			3		2-3-6	12	feet at time of boring
-	RESIDUUM-Very loose, silty SAND	RESIDUUM-Very loose, brown orange, silty SAND	10	4		1-2-2	12	
-	- 865	Loose dark vellowish brown silty		-				
-	SAND	SAND	15	5		3-3-4	18	
-	- 860			-				
-	- - -		20	6		3-4-4	12	
-	- 855	Medium dense, brown orange, silty						
-		SAND	25	7		6-8-8	12	
-	- 850					5 10 12	19	
-			30	8		5-10-13	18	
-	- 845					7_10_15	19	
-			35	7		1-12-13	10	
-	- 840	Medium dense, brown orange red, silty SAND		10		5-6-8	14	BOW-Bottom of Wall#1
			40	Ļ				

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sh	leet	2	of	2
<u> </u>		_	~	_

OJECT NAME: Fayetteville Pedestrian Bridge DATE:	B-2
3 NO.: 20014.003.14 DRILLER: Gable Drilling Co. Inc. RIG: CME 550 LOGGED BY: ELEV. DESCRIPTION DEPTH PEET SAMPLES NOTE #35 PWR-Very dense, black orange red, partially weathered rock 11 25:50.5" 12 -830 AUGER REFUSAL AT 48 FEET 50 - - - - -825 - - - - - - - - -820 -	e 25, 2015
ELEV. DESCRIPTION Description SAMPLES NOTE -835 PWR-Very dense, black orange red, partially weathered rock	Larry
Purce Description FEET No. Type BLOWsie* RECOV. w NO.	
-835 PWR-Very dense, black orange red, partially weathered rock 11 25-50/5" 12 -830 AUGER REFUSAL AT 48 FEET - - -830 AUGER REFUSAL AT 48 FEET - -820 - - -820 - -820 - -820 - -810 - -810 -	5
audie 45 11 25-50/5" 12	
830 AUGER REFUSAL AT 48 FEET 50 -825 50 -825 - -820 - -820 - -815 - -816 - -810 - -810 -	
-830	
830 AUGER REFUSAL AT 48 FEET 50	
300 AUGER REFUSAL AT 48 FEET 50 50	
-825 -826 -826 -820 -820 -820 -820 -815 -815 -810	
55 820 60 60 815 816 70	
-810	
- 810 - 70	
. 70	
- 805	
80	
-795	
. 85	

Accura 3200 Presi	a Engin idential Dr	neering and Consulting Services, In	nc.		וחר				Sheet 1 of 2
Office: 40	4.241.8722	2		BC	JRI	NG LO	JG		
со	NTRAC	TED WITH: GeoSystems Engineering, Inc							BORING NO.: B-3
PR	OJECT	NAME: Fayetteville Pedestrian Bridge		.		10.		0	DATE: June 25, 2015
JOI	B NO.:	_20014.003.14 DRILLER:Gable Drill	ing Co.	Inc.	ĸ	IG:	CME 550	0	LOGGED BY: Larry
	ELEV.	DESCRIPTION	DEPTH in EEET	NO	TYPE	SAMPLE	S	w	NOTES
		TOPSOIL		1		2 / 9	12		
	- 890	FILL-Medium dense, reddish brown, clayey SAND				5-4-0	12		
	-							-	
			5	2		4-6-6	14		
	- 885								
	-			3		5-6-5	12		
	-	Loose, reddish brown, clayey SAND							
BOW=882 -	-		10	4		2-3-5	14		
	- 880								
	-								
	-	RESIDUUM-Loose, gray orange, silty						-	
	-	SAND	15	5		2-2-3	14		
	- 875								
	-								
	-	Loose brown orange silty SAND							
	-	Loose, brown brange, sity SAND	20	6		2-2-3	12		
	- 070								
	- 870								
	-		-						feet at time of boring
	-			7		4-4-4	12		
	-		25						
	- 865								
	-								
	-	Medium dense, reddish yellow, silty SAND		8		4-5-11	18		
	-		30		/				
	- 860								
	_								
	-	Loose, brown orange silty SAND		- -		3-5-5	14		
	-		35	Ĺ		5-5-5			
	- 855								
									BOW-Bottom of Wall#1
		Medium dense, brown orange red, silty							
	-	SAND	40	10	7	6-9-11	14		
	- 850								
	-	Medium dense, brown orange red, silty							

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722	BORING LOG		Sheet 2 of
CONTRACTED WITH: GeoSystems Engineering, Inc.		BORING NO.:	B-3

JJECI	NAME: Fayetteville Pedestrian Bridge							DATE:	June 2	5, 2015
3 NO.:	20014.003.14 DRILLER: Gable 1	Drilling Co.	Inc	R	IG:	CME 55	0		BY:	Larry
	DESCRIPTION	DEPTH			SAMPLE	S		NOTES		
ELEV.		FEET	NO.	TYPE	BLOWS/6"	RECOV.	W		NOTES	
	SAND		 				-			
-		45	11		3-7-10	12				
		45								
- 845										
-	PWR-Very dense, orange brown.									
	partially weathered rock	50	12		20-50/4"	12				
		50								
- 840										
-	AUGER REFUSAL AT 52 FEFT									
		55								
- 835										
		60								
- 830										
-										
-		65								
- 825										
		70								
- 820										
		75								
- 815										
		80								
- 810										
-										
_										
		85								

Sheet 2 of 2

a, GA 404	A 30340			BC	DRI	NG LO	C				
		TED WITH: Coosystems Engineering Inc									
		NAME: Eavetteville Pedestrian Bridge	•						DATE · June 25, 2015		
IOB		20014 003 14 DRILLER: Gable Drill	ing Co	Inc	R	IG [.] (ME 55	0	LOGGED BY: Larry		
с г					_ `		-	0			
	ELEV.	DESCRIPTION	in FEET NO. TYPE BLOWS/6" RECOV.				S RECOV	\A/	NOTES		
96		FILL-Gravel	FEEI	NO.	TIFE	BLOWS/0	RECOV.	vv			
-	- 895	FILL-Medium dense, brown orange red, clayey SAND	-	1		2-5-6	12	-			
-		RESIDUUM-Medium dense, brown orange red, clayey SAND	5	2		5-8-14	14	-			
	- 890										
-		Stiff, yellowish red, sandy SILT (ML)		3		3-4-6	12	_	LL=49, PL=41, PI=8		
			10	4		3-5-8	18				
	- 885										
+											
ł											
ŀ			15	5	/	3-5-6	14				
	- 880							1			
-		Loose alive grou silty CAND									
-		Loose, onve gray, sitty SAND		6		2-3-4	12	1			
ŀ			20		7			1			
	- 875										
-				7		2-4-4	12	1			
-			25	,	/			-			
╞	- 870										
Ī			¥.						Groundwater encountered at 2		
		Medium dense, white brown orange, silty				4.6.9	10	1	leet at time of boring		
-		SAND	30	8		4-6-8	18				
	- 865										
ŀ											
-								-			
Ī			35	9		3-6-7	18				
	- 860										
									BOW-Bottom of Wall#2		
-									LL-Liquid Limit		
ŀ			40	10		3-4-8	14		PL-Platic Limit		
ŀ			40		/			1	PI-Plasticity Index		
	- 855			1							

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive

3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sheet	2	of	2
-------	---	----	---

JECT	NAME: Favette	eville Pedestria	n Bridge	<i>.</i>						DATE: June	<u>в-4</u> 25. 2015
3 NO.:	20014.003.14	DRILLER:	Gable Dril	ling Co	Inc	R	IG: (CME 550)	LOGGED BY:	Larrv
			Barry								
ELEV.		DESCRIPTION		in FFFT	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES	
-	Medium dens		red silty								
-	SAND	e, black blange	ieu, siity	45	11		5-8-10	12			
				45							
- 850											
-											
					12		3 4 7	12			
-				50	12		5-4-7	12			
- 845											
	Medium dens	e, light gray, si	lty SAND		 						
				55	13		4-6-7	14			
- 840											
					14		5-7-7	14			
	BORING TEI	RMINATED at	60 FEET	60							
- 835											
				65							
- 830											
-											
-											
-				70							
- 825											
-				75							
- 820											
				80							
- 815											
-					-						
-					1						
-				95							
				00	1						

Accura	a Engi	neering and Consulting Services, I	nc.						Sheet 1 of 1
3200 Pres Atlanta, G Office: 40	A 30340 4.241.8722	1ve 2		<u>B(</u>	DRI	NG L(<u>DG</u>		
CO PR	NTRAC	CTED WITH: <u>GeoSystems Engineering, Inc</u> NAME: Favetteville Pedestrian Bridge	2.						BORING NO.: <u>B-5</u> DATE: June 25, 2015
JOI	B NO.:	20014.003.14 DRILLER: Gable Drill	ing Co.	Inc.	R	IG:	CME 55	0	LOGGED BY: Larry
		DECODIDITION	DEPTH	DEPTH SAMPLES					NOTEO
	ELEV.	DESCRIPTION	in FEET	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES
BOW=904 -	- 905	TOPSOIL RESIDUUM-Very stiff to stiff, red, sandy SILT (ML)		1		4-7-16	10	-	
	-		5	2		4-7-8	12	13	LL=48, PL=34, PI=14
	- 900 - -	Medium dense, brown orange red, silty SAND		3		4-8-9	12	-	
	-		10	4		3-5-6	18	-	
	- 895 - -			-					
	-		15	5		4-6-7	14	-	
	- 890 - -			-					
	- - - 885	BORING TERMINATED AT 20 FEET	20	6		4-4-7	12	-	No groundwater encountered at time of boring
	-			-					
	- 880 -								
	- - - 875 -		30	-					
	- - - 870		35						
	-		40						BOW-Bottom of Wall#2 LL-Liquid Limit PL-Platic Limit PI-Plasticity Index
	- 865 -			-					

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayettevill	e Pedestrian Bri	idge/Walking Ti	rail		
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-4		Test Date:	08/02/17	Checked By:	MCM
	Depth :	9.5 ft		Test Id:	286071		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	t		
	Sample Cor	mment:					

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayetteville	e Pedestrian Bri	dge/Walking Ti	rail		
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-5+S-6 C	omposite	Test Date:	08/02/17	Checked By:	MCM
	Depth :	14.5-19.5	ft	Test Id:	286072		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, olive gra	ay silty sand			
	Sample Cor	mment:					

	Client:	GeoSysten	ns Engineering,	Inc.					
	Project:	Fayettevill	e Pedestrian Br	idge/Walking T	rail				
nd	Location:	Fayettevill	e, Georgia			Project No:	GTX-306785		
II9	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh		
	Sample ID:	S-2+S-3 C	Composite	Test Date:	08/02/17	Checked By:	MCM		
	Depth :	4.5-7.0 ft		Test Id:	286073				
	Test Comm	ent:							
	Visual Description: Moist, ye			Moist, yellowish brown clayey sand					
	Sample Co	mment:							

Sand/Gravel Hardness : ---

#200

0.075

38

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayetteville	e Pedestrian Bri	idge/Walking T	rail		
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
1	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-6		Test Date:	08/02/17	Checked By:	MCM
	Depth :	19.5 ft		Test Id:	286074		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, dark ye	llowish brown s	silty sand		
	Sample Cor	mment:					

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 #10 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 81.9 18.1 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.7863 mm D₃₀=0.1472 mm 4.75 100 #4 D₆₀ = 0.3850 mm $D_{15} = N/A$ #10 2.00 99 D₅₀ = 0.2894 mm $D_{10} = N/A$ #20 0.85 88 #40 0.42 63 $C_c = N/A$ $C_u = N/A$ 45 # 60 0.25 **Classification** 30 #100 0.15 <u>ASTM</u> N/A #200 0.075 18 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSyster	ns Engineering	Inc.			
	Project:	Fayettevill	e Pedestrian Br	idge/Walking T	rail		
ind	Location:	Fayettevill	e, Georgia		Project No:	GTX-306785	
H	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-3+S-4 (Composite	Test Date:	08/02/17	Checked By:	MCM
	Depth :	7.0-9.5 ft		Test Id:	286075		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, reddish	brown clayey	sand		
	Sample Cor	mment:					

	% Cobb	le	% Gravel		% Sand		% Si	ilt & Clay Size	
	-		2.4		57.6		40.0		
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies		<u>Coefficients</u>			
						D ₈₅ = 0.79	48 mm	$D_{30} = N/A$	
3/4in	19.00	100				D ₆₀ = 0.2715 mm		$D_{15} = N/A$	
1/2in	12.50	98			-	$D_{\rm E0} = 0.1647 \rm{mm}$		$D_{10} = N/A$	
#4	4.75	98			-				
#10	2.00	96			-	$C_u = N/A$		$C_{C} = N/A$	
#20	0.85	87			-		<u>Class</u>	sification	
#40	0.42	70			-	ASTM	N/A		
# 60	0.25	58			1				
#100	0.15	48				ΔΔSHTO	Silty Soils (1	$A_{-4}(0)$	
#200	0.075	40				AASHTO SIITY SOIIS (A-4 (0))			
					_				
						Sample/Test Description Sand/Gravel Particle Shape :			
						Sand/Grav	vel Hardness	:	

	Client:	GeoSystems Engineering, Inc.								
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail					
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
3	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-8		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	29.5 ft		Test Id:	286076					
	Test Comm	ent:								
	Visual Desc	Moist, reddish	yellow silty sar	nd						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #200 #100 3/8in 60 #10 #20 #40 #4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 0.01 0.001 1000 10 1 0.1 Grain Size (mm) % Cobble % Silt & Clay Size % Gravel % Sand 16 83.6 14 8

		1.0			05.0		
Sieve Name	Sieve Size, mm	Percen	t Finer	Spec. Percent	(Complies	
3/8in	9.50	10	0				
#4	4.75	9	3				
#10	2.00	9	5				
#20	0.85	8	1				
#40	0.42	5	7				
# 60	0.25	3	5				
#100	0.15	2	1				
#200	0.075	1!	5				

	1 110							
<u>Coefficients</u>								
D ₈₅ =0.9104 mm	D ₃₀ =0.1935 mm							
D ₆₀ =0.4570 mm	$D_{15} = 0.0761 \text{ mm}$							
D ₅₀ =0.3554 mm	D ₁₀ =N/A							
C _u =N/A	C _c =N/A							

ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

Client: GeoSystems Engineering, Inc.								
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail			
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785	
9	Boring ID:	B-4		Sample Type:	bag	Tested By:	twh	
_	Sample ID: S-3+S-4 Composite			Test Date:	08/02/17	Checked By:	MCM	
	Depth :	7.0-9.5 ft		Test Id:	286077			
	Test Comm	ent:						
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	t			
	Sample Cor	nment:						

Client:	GeoSysten	eoSystems Engineering, Inc.							
Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail					
Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
Boring ID:	B-4		Sample Type:	bag	Tested By:	twh			
Sample ID:	S-7		Test Date:	08/02/17	Checked By:	MCM			
Depth :	24.5 ft		Test Id:	286078					
Test Comm	ent:								
Visual Desc	ription:	Moist, olive gr	ay silty sand						
Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 70.8 29.2 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.6957 mm $D_{30} = 0.0792 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.3388 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = 0.2535 \text{ mm}$ $D_{10} = N/A$ #20 0.85 92 68 #40 0.42 $C_c = N/A$ $C_u = N/A$ 50 # 60 0.25 **Classification** 39 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

Client: GeoSystems Engineering, Inc.								
-	Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail			
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785	
9	Boring ID:	B-4		Sample Type:	bag	Tested By:	twh	
	Sample ID: S-13+S-14 Composite		Test Date:	08/02/17	Checked By:	MCM		
	Depth :	54.5-59.5	ft	Test Id:	286079			
	Test Comm	ent:						
	Visual Description: Moist, light gra			ay silty sand				
	Sample Cor	mment:						

Particle Size Analysis - ASTM D422 #100 #200 60 #10 #40 #20 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 71.1 28.9 ____ Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 1.4299 mm $D_{30} = 0.0847 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.5754 mm $D_{15} = N/A$ #10 2.00 94 D₅₀ = 0.3948 mm $D_{10} = N/A$ #20 0.85 71 51 #40 0.42 $C_u = N/A$ $C_c = N/A$ # 60 0.25 42 **Classification** 35 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail		
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh
	Sample ID: S-1+S-2 Composite			Test Date:	08/02/17	Checked By:	MCM
	Depth :	1.0-4.5 ft		Test Id:	286080		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, red san	dy silt			
	Sample Cor	mment:					

Particle Size Analysis - ASTM D422 #100 #200 60 #40 #20 0 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 46.3 53.7 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.4722 mm $D_{30} = N/A$ 4.75 100 #4 D₆₀ = 0.1484 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = N/A$ $D_{10} = N/A$ #20 0.85 98 83 #40 0.42 $C_c = N/A$ $C_u = N/A$ # 60 0.25 68 Classification Sandy Silt (ML) #100 60 0.15 <u>ASTM</u> #200 0.075 54

Sample/Test Description
Sand/Gravel Particle Shape :

AASHTO Clayey Soils (A-7-5 (6))

	Client:	GeoSysten	ns Engineering,	Inc.						
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
3	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-5		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	14.5		Test Id:	286081					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, red silty	/ sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail		
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-4		Test Date:	08/04/17	Checked By:	MCM
	Depth :	9.5 ft		Test Id:	286109		
	Test Comm	ent:					
	Visual Description: Moist, yellowish red sandy silt						
	Sample Cor	mment:					

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	B-1	9.5 ft	23	57	46	11	-2.1	Sandy Elastic silt (MH)

Sample Prepared using the WET method 18% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: RAPID Toughness: LOW

	Client:	GeoSystems Engineering, Inc.						
	Project:	Fayetteville Pedestrian Bridge/Walking Trail						
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785	
	Boring ID:	B-4		Sample Type:	bag	Tested By:	n/a	
	Sample ID: S-3+S-4 Composite Depth : 7.0-9.5 ft		Test Date:	08/04/17	Checked By:	MCM		
				Test Id:	286112			
	Test Comm	ent:						
	Visual Description: Moist, yellowis			h red sandy sil	t			
	Sample Comment:							

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3+S-4 Composite	B-4	7.0-9.5 ft	22	49	41	8	-2.4	Sandy Silt (ML)

Sample Prepared using the WET method 19% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

Client:	GeoSyster	GeoSystems Engineering, Inc.					
Project	: Fayettevill	Fayetteville Pedestrian Bridge/Walking Trail					
Locatio	n: Fayettevill	Fayetteville, Georgia				GTX-306785	
Boring	ID: B-5		Sample Type:	bag	Tested By:	twh	
Sample	e ID: S-1+S-2 (Composite	Test Date:	08/04/17	Checked By:	MCM	
Depth :	1.0-4.5 ft		Test Id:	286111			
Test Co	mment:						
Visual Description: Moist, red san			andy silt				
Sample	Sample Comment						

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-1+S-2 Composite	B-5	1.0-4.5 ft	13	48	34	14	-1.5	Sandy Silt (ML)

Sample Prepared using the WET method 17% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

ATTACHMENT B

APILE & GRLWEAP CALCULATIONS BENT 1 (NORTH-BORING B-4) BENT 2 (SOUTH-BORING B-3)

	FPB B4-65_FA. 4. ap7o								
	APLLE for Windows, Version 2015.7.6								
	Serial Number : 139304252								
	A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved								
	This program is licensed to :								
	GeoSystems Engineering, Inc. Roswell, GA								
Data	Path to file locations : C:\Users\Imullins\Documents\Calculations\APILE								
Data	Name of input data file : FPB B4-65_FA.4.ap7d Name of output file : FPB B4-65_FA.4.ap7o Name of plot output file : FPB B4-65_FA.4.ap7p								
	Time and Date of Analysis								
	Date: September 15, 2017 Time: 17:02:11								
1	**************************************								
	Fayetteville Pedestrian Bridge – North Bent (B-4) HP14x89 at 65 feet DESIGNER : LDM JOB NUMBER : GeoSystems 15-2511								
	METHOD FOR UNIT LOAD TRANSFERS :								
- FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used.									
	COMPUTATION METHOD(S) FOR PILE CAPACITY :								
	- FHWA (Federal Highway Administration)								
	TYPE OF LOADING : - COMPRESSION								

FPB B4-65_FA. 4. ap7o

PILE TYPE :

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS :

-	MODULUS OF ELASTICITY	= 0.290E+08 F	'SI
-	CROSS SECTION AREA	= 203.23 I	Ν2

NONCIRCULAR PILE PROPERTIES :

-	TOTAL PILE LENGTH, TL	=	65.00 FT.
-	PILE STICKUP LENGTH, PSL	=	0.00 FT.
-	ZERO FRICTION LENGTH, ZFL	=	0.00 FT.
-	PERIMETER OF PILE	=	57.05 IN.
-	TIP AREA OF PILE	=	203.23 IN2
-	INCREMENT OF PILE LENGTH		
	USED IN COMPUTATION	=	1.00 FT.

SOIL INFORMATIONS :

	LATERAL	EFFECTI VE	FRI CTI ON	BEARI NG
SOI L	EARTH	UNI T	ANGLE	CAPACI TY
TYPE	PRESSURE	WEI GHT	DEGREES	FACTOR
		LB/CF		
SAND	0.00	115.00	28.00	0.00
SAND	0.00	115.00	30.00	0.00
CLAY	0.00	115.00	0.00	0.00
CLAY	0.00	115.00	0.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	51.00	28.00	0.00
SAND	0.00	51.00	28.00	0.00
SAND	0.00	51.00	30.00	0.00
SAND	0.00	51.00	30.00	0.00
	SOI L TYPE SAND SAND CLAY CLAY SAND SAND SAND SAND SAND SAND	LATERAL SOIL EARTH TYPE PRESSURE SAND 0. 00 SAND 0. 00 CLAY 0. 00 CLAY 0. 00 SAND 0. 00	LATERAL EFFECTIVE SOIL EARTH UNIT TYPE PRESSURE WEIGHT LB/CF SAND 0.00 115.00 SAND 0.00 115.00 CLAY 0.00 115.00 CLAY 0.00 115.00 SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00	LATERAL EFFECTIVE FRICTION SOIL EARTH UNIT ANGLE TYPE PRESSURE WEIGHT DEGREES LB/CF LB/CF 28.00 SAND 0.00 115.00 30.00 CLAY 0.00 115.00 0.00 CLAY 0.00 115.00 0.00 SAND 0.00 115.00 28.00 SAND 0.00 115.00 28.00 SAND 0.00 115.00 28.00 SAND 0.00 51.00 28.00 SAND 0.00 51.00 28.00 SAND 0.00 51.00 28.00 SAND 0.00 51.00 30.00 SAND 0.00 51.00 30.00

MAXIMUM	UNDI STURB	REMOLDED			
UNI T	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	1.10	0.00	0.00	0.00	0.00
0. 10E+08*	1.10	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0.00	0.00	0.00	0.00	0.00
	MAXI MUM UNI T BEARI NG KSF 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08* 0. 10E+08*	MAXI MUM UNI T UNDI STURB SHEAR BEARI NG KSF STRENGTH KSF 0. 10E+08* 0. 00 0. 10E+08* 0. 00 0. 10E+08* 0. 00 0. 10E+08* 1. 10 0. 10E+08* 0. 00 0. 10E+08* 0. 00	MAXI MUM UNI T UNDI STURB SHEAR REMOLDED SHEAR BEARI NG KSF STRENGTH KSF STRENGTH KSF STRENGTH KSF 0. 10E+08* 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 10E+08* 1. 10 0. 00 0. 10E+08* 0. 00 0. 00	MAXI MUM UNI T UNDI STURB SHEAR REMOLDED SHEAR BLOW BEARI NG KSF STRENGTH KSF STRENGTH KSF STRENGTH KSF COUNT 0. 10E+08* 0. 00 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 00 0. 10E+08* 1. 10 0. 00 0. 00 0. 10E+08* 1. 10 0. 00 0. 00 0. 10E+08* 0. 00 0. 00 0. 00	MAXI MUM UNI T UNDI STURB SHEAR REMOLDED SHEAR BLOW COUNT UNI T SKI N FRI CTI ON KSF 0.10E+08* 0.00 0.00 0.00 0.00 0.00 0.10E+08* 0.00 0.00 0.00 0.00 0.00 0.10E+08* 0.00 0.00 0.00 0.00 0.00 0.10E+08* 1.10 0.00 0.00 0.00 0.00 0.10E+08* 1.10 0.00 0.00 0.00 0.00 0.10E+08* 0.00 0.00 0.00 0.00 0.00

* MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0. 10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

LRFD FACTOR ON UNIT	LRFD FACTOR ON UNIT
FRICTION	DEARTING
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
	LRFD FACTOR ON UNI T FRI CTI ON 1. 000 1. 000

1

PILE	TOTAL SKIN	END	ULTIMATE
PENEIRATION	FRICIION	BEARING	CAPACITY
	KIP 0.0	KIP 1 2	KIP 1 2
0.00	0.0	1. Z 2. E	1. Z 2. 4
1.00	0.1	Z. 3 4 E	Z.0 5 1
2.00	0.5	4.5	0. I 0 7
3.00	1.2	10.2	0.7
4.00 5.00	2.2	10.2	12.4
6.00	5.0	12.1	18.7
7 00	8.8	14 1	22 9
8 00	14 0	14 1	28 1
9,00	19.2	14.0	33.2
10.00	24.4	14.0	38.4
11.00	29.7	14.0	43.6
12.00	34.9	14.0	48.9
13.00	40. 1	14.0	54.1
14.00	45.4	14.0	59.3
15.00	50.6	14.0	64.6
16.00	55.8	14.3	70. 1
17.00	61.0	15.3	76.4
18.00	66.3	16.4	82.7
19.00	/1.4	17.4	88.8
20.00	/6.5	18.5	95.0
21.00	81.7	18.8	100.5
22.00	87. I	18.8	105.9
23.00	92.0	10.0	111.4
24.00	98. Z 104. 0	10.0	117.0
25.00	104.0	10.0 10.0	122.0
27 00	115 8	18.8	120.0
28.00	121 9	18.8	140 7
20.00	121.7	Dago 2	140.7

	FPB	B4-65 FA. 4. ap7c)
29.00	128.7	18.8	147.5
30.00	136.2	18.8	155.0
31.00	143.9	18.8	162.7
32.00	151.6	18.8	170. 4
33.00	159.6	18.8	178. 4
34.00	167. 6	18. 8	186.4
35.00	175. 9	18. 8	194.6
36.00	184. 2	18.8	203. 0
37.00	192. 7	18.8	211. 5
38.00	201. 3	18.8	220. 1
39.00	210. 0	18.8	228. 8
40.00	218.9	18.8	237.7
41.00	228.0	18.8	246.8
42.00	237. 1	18.8	255.9
43.00	246. 5	18.8	265.2
44.00 45.00	255.9 265.5 275.2	18.8 18.8	274.7 284.3
47.00	275.2	10. 0	294.0
	285.1	18. 8	303.9
	295.1	18. 9	313.8
49.00	305. 2 315. 5	18.8 18.8	324.0
51.00 52.00	325.9	18.8 18.8	344.7
53.00	347.1	18.8	365.9
54.00		18.8	376.7
55.00	368. 9	18. 8	387.7
56.00	380. 0	18. 8	398.8
57.00	391.2	18. 8	410. 0
58.00	402.6	18. 8	421. 4
59.00	414. 1	18. 8	432.9
60.00	425. 7	18. 8	444.5
61.00	437.5	18.8	456.3
62.00	449.4	18.8	468.2
63.00	461.5	18. 8	480.3
64.00	473.7	18. 8	492.5
65.00	486.0	18.8	504.8

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

* COMPUTE LOAD-DI STRI BUTI ON AND LOAD-SETTLEMENT * * CURVES FOR AXI AL LOADI NG *

T-Z CURVE NO.	NO. OF POI NTS	DEPTH TO CURVE FT.	LOAD TRANSFER PSI	PILE MOVEMENT IN.
1	10	0. 0000E+00 Page 4	0. 0000E+00 0. 5920E-01 0. 1184E+00 0. 2368E+00 0. 3552E+00 0. 4736E+00 0. 5328E+00 4	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01
		FPB B4-65 F	A. 4. ap7o	
---	----	---------------	--	--
			0.5920E+00 0.5920E+00 0.5920E+00	0. 1000E+00 0. 5000E+00 0. 2000E+01
2	10	0. 3025E+01	0.0000E+00 0.1697E+00 0.3394E+00 0.6787E+00 0.1018E+01 0.1357E+01 0.1527E+01 0.1697E+01 0.1697E+01 0.1697E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
3	10	0. 5958E+01	0.0000E+00 0.3795E+00 0.7590E+00 0.1518E+01 0.2277E+01 0.3036E+01 0.3416E+01 0.3795E+01 0.3795E+01 0.3795E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
5	10	0. 12025 - 02	0.0000E+00 0.1920E+01 0.3200E+01 0.4800E+01 0.5760E+01 0.5760E+01 0.5760E+01 0.5760E+01 0.5760E+01 0.5760E+01	0. 0000E+00 0. 2906E-01 0. 5629E-01 0. 1035E+00 0. 1453E+00 0. 1816E+00 0. 3632E+00 0. 5448E+00 0. 9080E+00 0. 3632E+01
6	10	0. 1796F+02	0.0000E+00 0.2292E+01 0.3819E+01 0.5729E+01 0.6875E+01 0.6875E+01 0.6875E+01 0.6875E+01 0.6875E+01 0.6875E+01	0.0000E+00 0.2906E-01 0.5629E-01 0.1035E+00 0.1453E+00 0.3632E+00 0.5448E+00 0.9080E+00 0.3632E+01
7	10	0 1800F±02	0. 0000E+00 0. 2262E+01 0. 3769E+01 0. 5654E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01 0. 6785E+01	0.0000E+00 0.2906E-01 0.5629E-01 0.1035E+00 0.1453E+00 0.3632E+00 0.5448E+00 0.9080E+00 0.3632E+01
,	10	0. 1000L+02	0. 0000E+00 0. 7434E+00 0. 1487E+01 0. 2974E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01

		FPB B4-65_F	A. 4. ap7o	
0	10	0 10025 02	0. 4460E+01 0. 5947E+01 0. 6691E+01 0. 7434E+01 0. 7434E+01 0. 7434E+01	0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
0	10	0. 1903E+02	0.0000E+00 0.7567E+00 0.1513E+01 0.3027E+01 0.4540E+01 0.6053E+01 0.6810E+01 0.7567E+01 0.7567E+01 0.7567E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+01 0.2000E+01
10	10	0. 20005 - 02	0.0000E+00 0.7567E+00 0.1513E+01 0.3027E+01 0.4540E+01 0.6053E+01 0.6810E+01 0.7567E+01 0.7567E+01 0.7567E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
10	10	0.2000E+02	0.0000E+00 0.7789E+00 0.1558E+01 0.3115E+01 0.4673E+01 0.6231E+01 0.7010E+01 0.7789E+01 0.7789E+01 0.7789E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
11	10	0. 2403E+02	0.0000E+00 0.8464E+00 0.1693E+01 0.3386E+01 0.5079E+01 0.6772E+01 0.7618E+01 0.8464E+01 0.8464E+01 0.8464E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+01 0. 2000E+01
12	10	0. 2796E+02	0.0000E+00 0.9406E+00 0.1881E+01 0.3762E+01 0.5644E+01 0.7525E+01 0.8466E+01 0.9406E+01 0.9406E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.2000E+01
13	10	0. 2800E+02	0. 0000E+00	0. 0000E+00

Page 6

		FPB B4-65_F	A. 4. ap7o	
		_	0. 1045E+01 0. 2091E+01 0. 4181E+01 0. 6272E+01 0. 8362E+01	0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01
14	10	0_4903F+02	0. 9408E+01 0. 1045E+02 0. 1045E+02 0. 1045E+02	0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
14		0.47032+02	0.0000E+00 0.1510E+01 0.3021E+01 0.6041E+01 0.9062E+01 0.1208E+02 0.1359E+02 0.1510E+02 0.1510E+02 0.1510E+02	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
15	10	0. 6996E+02	0. 0000E+00 0. 1802E+01 0. 3604E+01 0. 7208E+01 0. 1081E+02 0. 1442E+02 0. 1622E+02 0. 1802E+02 0. 1802E+02 0. 1802E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01

TIP LOAD	TIP MOVEMENT
KIP	IN.
0.0000E+00	0.0000E+00
0. 1175E+01	0. 9080E-02
0. 2350E+01	0. 1816E-01
0. 4700E+01	0. 3632E-01
0. 9399E+01	0. 2361E+00
0. 1410E+02	0.7627E+00
0. 1692E+02	0. 1326E+01
0. 1880E+02	0. 1816E+01
0. 1880E+02	0. 2724E+01
0. 1880E+02	0. 3632E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD TOP MOVEMENT KIP IN. IN. IN. IN. 0.5519E+00 0.1437E-03 IN. IN. IN. 0.5519E+01 0.1437E-03 IN. IN. IN. 0.2760E+02 0.7184E-02 IN. IN. IN. 0.5519E+02 0.7184E-02 IN. IN. IN. 0.2672E+03 0.7148E-01 IN. IN. IN. 0.4836E+03 0.1402E+00 IN. IN. IN.	TIP LOAD KIP 0. 1294E-01 0. 1294E+00 0. 6470E+00 0. 1294E+01 0. 5022E+01 0. 6198E+01 Page 7	TIP MOVEMENT IN. 0. 1000E-03 0. 1000E-02 0. 5000E-02 0. 1000E-01 0. 5000E-01 0. 1000E+00
---	---	---

	FPB	B4-65_FA. 4. ap7o	
0. 4926E+03	0.5410E+00	0. 1175E+02	0.5000E+00
0. 4962E+03	0. 1041E+01	0. 1529E+02	0. 1000E+01
0. 4997E+03	0. 2042E+01	0. 1880E+02	0. 2000E+01

Fayetteville Pedestrian Bridge - North Bent (B-4) HP14x89

Axial Load (kips)

Fayetteville Pedestrian Bridge North Bent (B-4) HP14x89

РРВ ВЗ-55_FА. ар7о					
APILE for Windows, Version 2015.7.6					
Serial Number: 139304252					
A Program for Analyzing the Axial Capacity and Short-term Settlement of Driven Piles under Axial Loading. (c) Copyright ENSOFT, Inc., 1987-2015 All Rights Reserved					
This program is licensed to :					
GeoSystems Engineering, Inc. Roswell, GA					
Path to file locations : C:\Users\Imullins\Documents\Calculations\APIL					
Name of input data file : FPB B3-55_FA.ap7d Name of output file : FPB B3-55_FA.ap7o Name of plot output file : FPB B3-55_FA.ap7p					
Time and Date of Analysis					
Date: August 10, 2017 Time: 16:50:11					
1 ************************************					
Fayetteville Pedestrian Bridge – South Bent (B-3) HP14x89 at 55 feet DESIGNER : LDM JOB NUMBER : GeoSystems 15-2511					
METHOD FOR UNIT LOAD TRANSFERS :					
- FHWA (Federal Highway Administration) Unfactored Unit Side Friction and Unit Side Resistance are used.					
COMPUTATION METHOD(S) FOR PILE CAPACITY : - FHWA (Federal Highway Administration)					
TYPE OF LOADING : - COMPRESSION					

FPB B3-55_FA. ap7o

PILE TYPE :

H-Pile/Steel Pile

DATA FOR AXIAL STIFFNESS :

-	MODULUS OF ELASTICITY	= 0.290E+08 PS	L
-	CROSS SECTION AREA	= 203.23 IN	2

NONCIRCULAR PILE PROPERTIES :

-	TOTAL PILE LENGTH, TL	=	55.00 FT.
-	PILE STICKUP LENGTH, PSL	=	0.00 FT.
-	ZERO FRICTION LENGTH, ZFL	=	0.00 FT.
-	PERIMETER OF PILE	=	57.05 IN.
-	TIP AREA OF PILE	=	203.23 IN2
-	INCREMENT OF PILE LENGTH		
	USED IN COMPUTATION	=	1.00 FT.

SOIL INFORMATIONS :

	LATERAL	EFFECTI VE	FRI CTI ON	BEARI NG
SOI L	EARTH	UNI T	ANGLE	CAPACI TY
TYPE	PRESSURE	WEI GHT	DEGREES	FACTOR
		LB/CF		
SAND	0.00	115.00	30.00	0.00
SAND	0.00	115.00	30.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	115.00	28.00	0.00
SAND	0.00	51.00	30.00	0.00
SAND	0.00	51.00	30.00	0.00
SAND	0.00	51.00	45.00	0.00
SAND	0.00	51.00	45.00	0.00
SAND	0.00	51.00	0.00	0.00
SAND	0.00	51.00	0.00	0.00
	SOI L TYPE SAND SAND SAND SAND SAND SAND SAND SAND	LATERAL SOI L EARTH TYPE PRESSURE SAND 0. 00 SAND 0. 00	LATERAL EFFECTIVE SOIL EARTH UNIT TYPE PRESSURE WEIGHT LB/CF SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 115.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00 SAND 0.00 51.00	LATERAL EFFECTIVE FRICTION SOIL EARTH UNIT ANGLE TYPE PRESSURE WEIGHT DEGREES LB/CF LB/CF 0.00 115.00 30.00 SAND 0.00 115.00 30.00 SAND 0.00 115.00 28.00 SAND 0.00 51.00 30.00 SAND 0.00 51.00 45.00 SAND 0.00 51.00 0.00 SAND 0.00 51.00 0.00

MAXIMUM	MAXIMUM	UNDI STURB	REMOLDED			
UNI T	UNI T	SHEAR	SHEAR	BLOW	UNIT SKIN	UNIT END
FRI CTI ON	BEARI NG	STRENGTH	STRENGTH	COUNT	FRI CTI ON	BEARI NG
KSF	KSF	KSF	KSF		KSF	KSF
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	0.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	100.00	0.00	0.00
0. 10E+08*	0. 10E+08*	0.00	0.00	100.00	0.00	0.00

* MAXIMUM UNIT FRICTION AND/OR MAXIMUM UNIT BEARING WERE SET TO BE 0. 10E+08 BECAUSE THE USER DOES NOT PLAN TO LIMIT THE COMPUTED DATA.

LRFD FACTOR ON UNIT FRICTION	LRFD FACTOR ON UNIT BEARING
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
1.000	1.000
	LRFD FACTOR ON UNI T FRI CTI ON 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1

* COMPUTATI ON RESULT *

PILE	TOTAL SKIN	END	ULTIMATE
PENEIRATION		BEARING	
0 00		1.6	1.6
1.00	0.2	3.0	3.2
2.00	0.6	5.4	6.0
3.00	1.4	8.5	9.9
4.00	2.5	11.3	13.8
5.00	3.9	13.9	17.8
6.00 7.00	5.6	15.9	21.5
8 00	9.9	17.1	24.7
9.00	12.4	18.3	30.6
10.00	14.8	18.3	33.1
11.00	17.6	18.6	36.2
12.00	20.6	18.8	39.4
13.00	23.8	18.8	42.6
14.00	27.3	18.8 10.0	40. I 40. 0
16 00	35.2	18.8	49.9 54 0
17.00	39.5	18.8	58.3
18.00	44.0	18.8	62.8
19.00	48.9	18.8	67.7
20.00	54.0	18.8	72.7
21.00	59.7	18.8	/8.5
22.00	00. I 72 7	18.8 10.0	84.9 01 5
23.00	72.7 79.4	18.8	91.5
25.00	86.2	18.8	105.0
26.00	93.2	18.8	112.0
27.00	100.3	18.8	119. 1
28.00	107.5	18.8	126. 3
		Page 3	

		FPB B3-55 FA. ap7o	
29.00	114.9	18.8	133.7
30.00	122.4	18.8	141.2
31.00	130.1	18.8	148.9
32.00	137.9	18.8	156.7
33.00	145.8	18.8	164.6
34.00	153.9	18.8	172.7
35.00	162.1	18.8	180. 9
36.00	170.4	18.8	189. 2
37.00	178.9	18.8	197.7
38.00	187.5	18.8	206.3
39.00	196.3	18.8	215.1
40.00	205.2	18.8	224.0
41.00	214.2	18.8	233.0
42.00	223.4	18.8	242.2
43.00	232.7	18.8	251.5
44.00	242.1	18.8	260.9
45.00	251.7	18.8	270.5
46.00	261.4	79.6	341.0
47.00	271.3	304.7	576.0
48.00	281.3	529.9	811.2
49.00	305.1	755.1	1060.2
50.00	343.0	980.2	1323.2
51.00	381.4	1041.0	1422.4
52.00	420.3	1041.0	1461.3
53.00	461.4	1041.0	1502.4
54.00	504.7	1041.0	1545.7
55.00	548.6	1041.0	1589.6

NOTES:

- AN ASTERISK IS PLACED IN THE END-BEARING COLUMN IF THE TIP RESISTANCE IS CONTROLLED BY THE FRICTION OF SOIL PLUG INSIDE AN OPEN-ENDED PIPE PILE.

* COMPUTE LOAD-DI STRI BUTI ON AND LOAD-SETTLEMENT * CURVES FOR AXI AL LOADI NG *

T-Z CURVE NO.	NO. OF POI NTS	DEPTH TO CURVE FT.	LOAD TRANSFER PSI	PILE MOVEMENT IN.
1	10	0. 0000E+00	0.0000E+00 0.6802E-01 0.1360E+00 0.2721E+00 0.4081E+00 0.5442E+00 0.6122E+00 0.6802E+00 0.6802E+00 0.6802E+00	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
2	10	0. 4025E+01	0.0000E+00 0.2267E+00 0.4535E+00 0.9070E+00 0.1360E+01 0.1814E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01

		FPB B3-55_	FA. ap7o	
2	10	0 7058E±01	0. 2041E+01 0. 2267E+01 0. 2267E+01 0. 2267E+01	0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
	10	0. 20005 - 01	0.0000E+00 0.3465E+00 0.6929E+00 0.1386E+01 0.2079E+01 0.3118E+01 0.3465E+01 0.3465E+01 0.3465E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
4	10	0.8000E+01	0.0000E+00 0.3574E+00 0.7148E+00 0.1430E+01 0.2144E+01 0.2859E+01 0.3216E+01 0.3574E+01 0.3574E+01 0.3574E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
5	10	0. 1403E+02	0.0000E+00 0.5715E+00 0.1143E+01 0.2286E+01 0.3429E+01 0.4572E+01 0.5143E+01 0.5715E+01 0.5715E+01 0.5715E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
6	10	0. 1996E+02	0.0000E+00 0.7937E+00 0.1587E+01 0.3175E+01 0.4762E+01 0.6350E+01 0.7143E+01 0.7937E+01 0.7937E+01 0.7937E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
0	10	0.2402E.02	0.0000E+00 0.8908E+00 0.1782E+01 0.3563E+01 0.5345E+01 0.7127E+01 0.8017E+01 0.8908E+01 0.8908E+01 0.8908E+01	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+00 0.2000E+01
ō	ĨŬ	U. 34U3E+UZ	0. 0000E+00 0. 1209E+01 0. 2417E+01	0. 0000E+00 0. 1000E-01 0. 2000E-01

		FPB B3-55_F	A. ap7o	
Q	10	0 4796E±02	0. 4835E+01 0. 7252E+01 0. 9669E+01 0. 1088E+02 0. 1209E+02 0. 1209E+02 0. 1209E+02	0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
7		0.47702+02	0.0000E+00 0.2472E+01 0.4944E+01 0.9888E+01 0.1483E+02 0.1978E+02 0.2225E+02 0.2472E+02 0.2472E+02 0.2472E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
10	10	0. 4800E+02	0. 0000E+00 0. 4510E+01 0. 9019E+01 0. 1804E+02 0. 2706E+02 0. 3608E+02 0. 4059E+02 0. 4510E+02 0. 4510E+02 0. 4510E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
11	10	0. 5003E+02	0.0000E+00 0.5646E+01 0.1129E+02 0.2259E+02 0.3388E+02 0.4517E+02 0.5082E+02 0.5646E+02 0.5646E+02 0.5646E+02	0.0000E+00 0.1000E-01 0.2000E-01 0.4000E-01 0.6000E-01 0.8000E-01 0.9000E-01 0.1000E+00 0.5000E+01
12	10	0. 5196E+02	0. 0000E+00 0. 5843E+01 0. 1169E+02 0. 2337E+02 0. 3506E+02 0. 4674E+02 0. 5259E+02 0. 5843E+02 0. 5843E+02 0. 5843E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00 0. 2000E+01
13	10	0. 5200E+02	0. 0000E+00 0. 6164E+01 0. 1233E+02 0. 2465E+02 0. 3698E+02 0. 4931E+02 0. 5547E+02 0. 6164E+02 0. 6164E+02	0. 0000E+00 0. 1000E-01 0. 2000E-01 0. 4000E-01 0. 6000E-01 0. 8000E-01 0. 9000E-01 0. 1000E+00 0. 5000E+00
14	10	0. 5603E+02 Page <i>6</i>	0.6164E+02	U. 2000E+01

		FPB B3-55_FA	. ap7o	
			Ó. 0000E+00	0. 0000E+00
			0. 6405E+01	0.1000E-01
			0. 1281E+02	0.2000E-01
			0. 2562E+02	0.4000E-01
			0. 3843E+02	0.6000E-01
			0. 5124E+02	0.8000E-01
			0. 5765E+02	0.9000E-01
			0. 6405E+02	0. 1000E+00
			0. 6405E+02	0. 5000E+00
			0. 6405E+02	0. 2000E+01
15	10	0. 5996E+02		
			0. 0000E+00	0. 0000E+00
			0. 6405E+01	0.1000E-01
			0. 1281E+02	0.2000E-01
			0. 2562E+02	0.4000E-01
			0. 3843E+02	0.6000E-01
			0. 5124E+02	0.8000E-01
			0. 5765E+02	0.9000E-01
			0. 6405E+02	0. 1000E+00
			0. 6405E+02	0. 5000E+00
			0. 6405E+02	0. 2000E+01

TIP LOAD	TIP MOVEMENT
KIP	IN.
0.0000E+00	0.0000E+00
0.6506E+02	0.9080E-02
0.1301E+03	0.1816E-01
0.2602E+03	0.3632E-01
0.5205E+03	0.2361E+00
0.7807E+03	0.7627E+00
0.9369E+03	0.1326E+01
0.1041E+04	0.1816E+01
0. 1041E+04	0. 3632E+01

LOAD VERSUS SETTLEMENT CURVE

TOP LOAD	TOP MOVEMENT	TIP LOAD	TIP MOVEMENT
KIP	IN.	KI P	IN.
0. 1505E+01	0.2410E-03	0.7166E+00	0. 1000E-03
0. 1505E+02	0.2410E-02	0. 7166E+01	0. 1000E-02
0.7523E+02	0. 1205E-01	0. 3583E+02	0.5000E-02
0. 1509E+03	0. 2412E-01	0. 7166E+02	0. 1000E-01
0.6606E+03	0. 1109E+00	0. 2781E+03	0.5000E-01
0. 9541E+03	0. 1895E+00	0. 3432E+03	0. 1000E+00
0. 1262E+04	0. 6240E+00	0. 6509E+03	0. 5000E+00
0. 1457E+04	0. 1146E+01	0.8466E+03	0. 1000E+01
0. 1652E+04	0. 2168E+01	0. 1041E+04	0. 2000E+01

Fayetteville Pedestrian Bridge - South Bent (B-3) HP14x89

Fayetteville Pedestrian Bridge South Bent (B-3) HP14x89

Geotechnical & Environmental Consult Inc Fayetteville Ped Bridge South Bent B-3 R

03-Oct-2017 GRLWEAP Version 2010

Geotechnical & Environmental Consult Inc Fayetteville Ped Bridge South Bent B-3 R

Energy kips-ft	Stroke ft	Blow Count bl/ft	Maximum Tension Stress ksi	Maximum Compression Stress ksi	Ultimate Capacity kips
2 79	3 00	9999 0	1 13	9 78	385.0
5.18	4.00	9999.0	1.51	13.08	385.0
7.49	5.00	435.7	1.37	16.68	385.0
9.74	6.00	200.8	1.40	19.71	385.0
11.97	7.00	132.4	1.37	22.38	385.0
14.22	8.00	100.1	1.31	24.83	385.0
16.43	9.00	82.1	1.24	27.07	385.0
18.58	10.00	70.7	1.26	29.47	385.0
20.76	11.00	62.3	1.24	31.54	385.0

Geotechnical & Environmental Consult Inc Fayetteville Ped Bridge South Bent B-3 R

Oct 03 2017 GRLWEAP Version 2010

Gain/Loss 1 at Shaft and Toe 0.833 / 1.000

Gain/Loss 1 at Shaft and Toe 0.833 / 1.000

Depth ft	Ultimate Capacity kips	Friction kips	End Bearing kips	Blow Count blows/ft	Comp. Stress ksi	Tension Stress ksi	Stroke ft	ENTHRU kips-ft
2.0	70.9	0.2	70.7	7.8	20.379	-3.725	6.38	18.4
4.0	71.6	0.8	70.7	7.9	20.402	-3.681	6.39	18.4
6.0	72.6	1.9	70.7	8.0	20.464	-3.650	6.40	18.3
8.0	74.1	3.3	70.7	8.1	20.523	-3.605	6.42	18.3
10.0	43.0	5.3	37.7	4.0	17.997	-5.704	5.70	20.3
12.0	45.3	7.6	37.7	4.2	18.166	-5.705	5.75	20.1
14.0	48.1	10.4	37.7	4.4	18.406	-5.698	5.81	20.0
16.0	51.3	13.6	37.7	4.7	18.637	-5.668	5.86	19.8
18.0	55.0	17.2	37.7	5.0	18.884	-5.632	5.92	19.6
20.0	59.0	21.3	37.7	5.4	18.981	-5.459	5.94	19.2
22.0	109.7	24.8	84.9	12.5	22.358	-1.845	6.99	17.5
24.0	113.4	28.5	84.9	12.9	22.503	-1.733	7.04	17.4
26.0	117.2	32.3	84.9	13.4	22.616	-1.654	7.09	17.3
28.0	121.2	36.3	84.9	13.9	22.755	-1.554	7.14	17.3
30.0	125.3	40.4	84.9	14.5	22.869	-1.455	7.19	17.2
32.0	129.6	44.8	84.9	14.9	22.972	-1.357	7.23	17.1
34.0	134.1	49.2	84.9	15.4	23.083	-1.356	7.27	17.0
36.0	138.7	53.8	84.9	15.9	23.371	-1.349	7.39	17.0
38.0	143.5	58.6	84.9	16.4	23.476	-1.412	7.44	16.9
40.0	148.4	63.6	84.9	17.0	23.614	-1.388	7.50	16.9
42.0	153.5	68.6	84.9	17.7	23.711	-1.220	7.55	16.8
44.0	158.8	73.9	84.9	18.4	23.819	-0.931	7.60	16.8
46.0	164.2	79.3	84.9	19.1	23.909	-1.123	7.65	16.7
48.0	169.8	84.9	84.9	19.8	24.001	-1.248	7.70	16.6
50.0	443.7	90.0	353.7	96.0	32.762	-1.232	9.61	17.7

Total Continuous Driving Time 15.00 minutes; Total Number of Blows

649 (starting at penetration 2.0 ft)

ATTACHMENT C

SPECIAL PROVISION 523 DYNAMIC PILE TESTING SPECIAL PROVISION 520 PILING FOR LRFD

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

SR 54 MULTI-USE TRAIL & BRIDGE, FAYETTE COUNTY PI NO. 0012878

SECTION 523 - DYNAMIC PILE TESTING

523.1 General Description

The work consists of performing dynamic pile testing using the Pile Driving Analyzer (PDA) to monitor the driving of piles with accelerometer and strain gauges attached to the piles. Piles to be dynamically tested will be identified in the Special Provision or on the Plans. Prior to pile driving, the Engineer will determine production or test piles to be dynamically tested. Perform the dynamic pile testing in accordance with ASTM D4945-12.

Take dynamic measurements during driving of any required piles. Drive the pile as shown in the Special Provisions or on the Plans.

523.2 Materials

Furnish measuring instruments for dynamic pile testing. Attach instruments near the top of the piles with bolts placed in drilled holes. Furnish materials, labor and equipment necessary for installation of the instruments.

523.3 Construction Requirements

Measure wave speed prior to driving piles. Wave speed measurements will not be required for Steel H piles or metal shell piles. When wave speed measurements are performed, place the piles in a horizontal position not in contact with other piles.

Perform dynamic pile testing during driving. Modify the driving to reduce the stress and/or eliminate the damage, should the recommended stress level be exceeded or if damage occurs (determined visually or as indicated by the instrumentation).

Do not exceed the following maximum driving stresses, as determined by the dynamic pile testing:

1. For Steel piles:

0.9 Fy, where Fy = Yield strength of steel

2. For Prestressed Concrete Piles:

Compression:

$$\sigma_{dr} = \left(0.85 f^{\prime}_{o} - f_{ge}\right)$$

Tension in Normal Environments:

$$\sigma_{dr} = \left(0.095 \sqrt{f_{\sigma}^{r}} + f_{pe}^{o} \right)$$

Tension in Severe Corrosive Environments:

Tar = Taalye

where;

 σ_{dr} = maximum allowed driving stress, ksi

f'c= specified minimum 28-day compressive strength of concrete, ksi

fpe= effective prestress in concrete, ksi, (after all losses) at the time of driving taken as

0.78 times the initial prestress force

Re-drive friction piles that do not obtain bearing after a freeze period of a minimum of 24 hours or for a period designated on the Plans, whichever is longer. Reset the gauges if required. Re-strike the pile with a warm hammer until a maximum penetration of 3 inches (76 mm) or 40 blows is reached, whichever occurs first. The Engineer may modify the Pile Driving Objective based on the results of the PDA work.

Provide two weeks' notice prior to the driving of designated piles and cooperate with the Engineer in connection with the performance of Dynamic Pile Testing.

Provide a complete report consisting of but not limited to PDA field monitoring data, results of CAPWAP computer analyses, and recommendations such as pile lengths, hammer fuel setting, and valid driving criteria. Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile. Submit the report electronically in PDF format and the electronic data files of the PDA analysis and CAPWAP to the Geotechnical Bureau and allow seven (7) calendar days for review and approval before proceeding with driving production piles.

523.4 Measurement

The Dynamic Pile Tests performed in accordance with these Specifications will be counted separately for payment. (Refer to plans summary sheet for the required amount of PDA testing.)

523.5 Payment

The Dynamic Pile Test completed and accepted will be paid for at the Contract unit Price. This payment will be full compensation for all costs of complying with this specification, including incidentals, additional work, and any delays incurred in conjunction therewith.

Payment will be made under:

Item No. 523. Dynamic Pile Test_____. Per Each

Office of Materials and Testing

DEPARTMENT OF TRANSPORTATION STATE OF GEORGIA

SPECIAL PROVISION

SR 54 MULTI-USE TRAIL & BRIDGE, FAYETTE COUNTY PI NO. 0012878

SECTION 520—PILING

Delete Sub-Section 520.3.05.D.1 and substitute the following:

520.3.05.D.1. Determine Driving Resistance

Drive piles in one continuous operation. Determine the driving resistance of the piling based on the method specified in the plans, which will be one of the following methods (a - c):

- a. Upon completion of the dynamic pile testing in accordance with Special Provision Section 523. The pile bearing will be determined by computing the penetration per blow with less than ¼-inch (6-mm) rebound averaged through 12 inches (305 mm) each of penetration. When it is considered necessary by the Engineer, the average penetration per blow may be determined by averaging the penetration per blow through the last 10 to 20 blows of the hammer. In soft material the driving resistance may be determined, at the Engineer's discretion, after delaying driving operations and performing pile restrikes.
- b. Upon completion of the loading test in accordance with Sub-Section 520.3.05.D.2.
- c. Shall not be used when driving pile to hard rock. Using FHWA-modified Gates Formula as provided below:

$$R_{ndr} = 1.75 (E_d)^{0.5} \log_{10} (10N_b) - 100$$
 (kips) U.S units
$$R_{ndr} = 7 (E_d)^{0.5} \log_{10} (10N_b) - 550$$
 (kN) S.I. units

Where:

 R_{ndr} = nominal pile driving resistance measured during pile driving

 E_d = developed hammer energy. This is the kinetic energy in the ram at impact for a given blow. If ram velocity is not measured, it may be assumed equal to the potential energy of the ram at the height of the stroke, taken as the ram weight times the actual stroke (ft-lb for U.S units, kN-m for S.I. units)

 N_b = Number of hammer blows for 1.0 inch of pile permanent set (blows/in)

These resistance formulas apply only when:

- The hammer has a free fall.
- The head of the pile is not broomed, crushed, spalled, or excessively crimped.
- The penetration rate is reasonably uniform.

Determining driving resistance by formula is not a Pay Item. Provide the facilities for determining driving resistance by formula as an incidental part of the work.

Once the driving resistance has been determined by one of the methods noted above, do not continue to drive piles if the Engineer determines that the piles have reached practical refusal. Practical refusal is defined as 20 blows per inch with the hammer operating at the highest setting or setting determined by the Engineer and less than ¹/₄-inch (6-mm) rebound per blow. The Engineer will generally make this determination within 2 inches (51 mm) of driving. However, the Engineer will not approve the continuation of driving at practical refusal for more than 12 inches (305 mm). When the required pile penetration cannot be achieved by driving without exceeding practical refusal, use other penetration aids such as jetting, spudding, predrilling or other methods approved by the Engineer.

d. Wave Equation: Use the Wave Equation Analysis for Piles (WEAP) program to evaluate the suitability of the proposed driving system chosen from the methods noted above (including the hammer, follower, capblock and pile cushions) as well as to estimate the driving resistance to achieve the pile bearing requirements and to evaluate pile driving stresses. Use the WEAP program to show that the hammer is capable of driving to a driving resistance equal 130% (1.3 times) the driving resistance shown in the Plans without overstressing the piling in compression or tension and without reaching practical refusal.

Perform the WEAP analysis with personnel who are experienced in this type work, and have performed this analysis on a minimum of 15 projects. Provide a list of the qualifications and experience of the personnel to perform the WEAP analysis for this Project.

The Engineer may modify the scour resistance shown in the plans if the dynamic pile test is used to determine the actual soil resistance through the scour zone. Also, the Engineer may make modifications in scour resistance when the Contractor proposes drilling and/or jetting to reduce the soil resistance in the scour zone.

A minimum of two weeks prior to beginning any pile driving operations, submit to the Engineer for evaluation and approval the following information on all of the proposed pile driving system(s) to be used on the Project including but not limited to:

- i. Items on Pile Driving Equipment Data Sheet
- ii. Other information on the driving system required by the Engineer

- iii. A WEAP program output indicating the approximate depth or elevation where the pile will achieve the bearing required
- iv. Valid Driving Criteria.

Valid driving criteria is defined as having the required hammer having a hammer set greater than 3 blows per inch and less than 10 blows per inch at the driving resistance for that pile.

If WEAP analyses show that the hammer(s) will overstress the pile, modify the driving system or method of operation as required to prevent overstressing the pile. Resubmit the modified pile driving system information and WEAP program output to the Engineer for re-evaluation. Do not begin pile driving operations until the Engineer has approved the qualifications of the personnel, the WEAP program output, and the pile driving system(s).

Approval of the pile driving system(s) is also based on satisfactory field trials with dynamic pile testing. Obtain approval from the Engineer for the pile driving system(s) based on satisfactory field performance.

If piles require different hammer sizes, the Contractor may elect to drive with more than one size hammer or with a variable energy hammer, provided that the hammer is properly sized and cushioned, will not damage the pile, and will develop the required resistance.

For penetration of weak soils by concrete piles, use thick cushions and/or reduced stroke to control tension stresses during driving.

Office of Materials and Testing

Pile Driving Data Form

Contract ID: PI Number: County		Structure Name: Structure No.: Pile Driving Contractor:			
		Manufacturer:	Model No.		
		Hammer Type:	Serial No.		
		Manufacturers Maximum Rated	Energy:	(ft-k)	
\sim	Hommor	Stroke at Maximum Rated Ener	gy:	(ft)	
~ ~	Hammer	Range in Operating Energy:	to	(ft-k)	
		Range in Operating Stroke:	to	(ft)	
		Ram Weight:		(kips)	
		Modifications:			
	Striker Plate	Weight:(kips) Thickness:(in)	Diameter:	(in)	
		Material 1	Material 2		
		Name:	Name:		
	Hammer	A rea: (in^2)	A rea: (in^2)		
	Cushion	Thickness/Dister (in)	Thickness/Dister	(in)	
	Cusinon	No. of Plates:	No of Plates:	(111)	
		Total Thickness of Hammer Cu	shion:	(in)	
				、	
	Helmet	Weight including inserts:		(kips)	
		Material			
	Pile	Area: (in^2)	Thickness/Sheet	(in)	
	Cushion	No of Sheets:		(III)	
	Cushion	Total Thickness of Pile Cushion	::	(in)	
		Pile Type:			
		Wall Thickness:(in)	Taper:		
	51	Cross Sectional Area:(in ²)	Weight/Meter:		
	Pile	Ordered Length:		(ft)	
		Driving Resistance:		(kips)	
		Description of Splice:			
		Driving Shoe/Closure Plate Des	cription:		
Submitted By	•		Date:		
\sim actinities D_{y}	•				

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017 Revision No. 2

1. Location	The project is located on Georgia Highway 54 West, near street address 1294 and Piedmont Fayette Hospital, Fayetteville, Fayette County, Georgia. The location is approximately midway between Sandy Creek Road to the east and Veterans Parkway to the west.
2. Geology	The site is located within the Piedmont Physiographic Province of Georgia. Rocks within the Clarkston Formation, described as a sillimanite-garnet- quartz-plagioclase-biotite-muscovite schist interlayered with hornblende- plagioclase amphibolite of Precambrian age underlie the site. The Clarkston Formation is locally intruded in the Tyrone, Peachtree City and Fayetteville area by younger rocks of the Palmetto Granite unit, which is a coarse-grained porphyritic granite.
3. Subsurface Information	The investigation encountered fill materials, residual soils, partially weathered rock (PWR) and auger refusal material. Please see the enclosed Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 and Soil Test Boring Records for specific subsurface conditions at each boring location.
	Below a surfical topsoil or gravel layer, fill was encountered at all boring locations, except B-5, to depths ranging approximately from 3 to 13 feet. The fill was sampled as either loose or medium dense clayey sand.
	Residual soils were initially encountered below the topsoil layer in boring B-5 and from below the fill in the remaining borings. The residual soil profile mainly consists of loose and medium dense silty sand. Some clayey sand and sandy silt were also penetrated in the upper portions of three borings. The residual soils extend to the top of partially weathered rock (PWR) at depths of about 43 and 48 feet, respectively, in borings B-2 and B-3 and to boring termination depths of 20 and 60 feet in the remaining three borings.
	Partially weathered rock was encountered from below the residual soils to auger refusal depths of 48 feet at the location of boring B-2 and 52 feet at B-3.
	Groundwater was encountered in borings B-2, B-3 and B-4, respectively, at depths of 5, 22 and 27 feet below the ground surface at the time of the field investigation. Groundwater was not observed in boreholes B-1 and B-5 at the time of drilling. No 24-hour groundwater measurements were obtained, since all of the boreholes caved at depths ranging from 7 to 9.5 feet below ground.
4. Soil Parameters	Mechanically Stabilized Earth (MSE) retaining walls are planned for support of the bridge approach ramps and abutments. MSE wall foundation soils consist of undisturbed residual soils and existing fill. The residual soils were classified as loose and medium dense silty sand (SM) with some stiff to very stiff sandy silt (ML-MH) and medium dense clayey sand (SC). The existing fill is described as loose or medium dense clayey sand (SC).

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017

4. Soil Parameters (Continued)	<u>Undisturbed Residual Soils/Existing Fill.</u> Standard penetration resistance (N) values in the residual soils ranged from a minimum of 4 to a maximum of 27 blows per foot (bpf), with most values between 10 to 15 bpf. In the fill soils, standard penetration resistances ranged from a minimum of 5 bpf to 17 bpf. Based on correlations with SPT N-values and our previous experience with similar conditions, we recommend the following design parameters for the MSE wall foundation soils:
	Angle internal soil friction angle $(\phi) = 28$ degrees Cohesion value $(c) = 0$ psf Soil Unit Weight $(\gamma) = 115$ pcf Coefficient of Sliding Friction $(\mu) = 0.53$
	Wall Backfill. Backfill in the reinforced zone of the MSE walls should be well-graded granular soils free from organic matter, shale, soft particles or other deleterious materials. The reinforced zone backfill should have a maximum particle size of ³ / ₄ to 1-inch and conform to the gradation limits of 0 to 60 percent passing the No. 40 sieve and 0 to 15 percent passing the No. 200 sieve. The plasticity index should be less than 6. We assume any retained fill soils in the ramps required beyond the reinforced zone will consist of native silty sand residual soils typical of the Piedmont area. The following soil parameters for the MSE wall backfill in the reinforced zone and retained soils are recommended for design:
	Select Reinforced Zone Granular Backfill Angle internal soil friction angle (ϕ) = 34 degrees Cohesion value (c) = 0 psf Soil Unit Weight (γ) = 135 pcf
	Retained Fill - Silty Sand (SM) 98% Standard Proctor MDD Angle internal soil friction angle (ϕ) = 28 degrees Cohesion value (c) = 0 psf Soil Unit Weight (γ) = 124 pcf
	Retained Fill – Silty Sand (SM) 95% Standard Proctor MDD Angle internal soil friction angle (ϕ) = 25 degrees Cohesion value (c) = 0 psf Soil Unit Weight (γ) = 117 pcf
5. Recommendations	Soil Bearing. Based on local experience and correlations with N-values for loose to medium dense silty sand, loose to medium dense clayey sand and stiff sandy silt, a maximum allowable general soil bearing capacity of 4,000 psf is recommended for preliminary design of the MSE walls on this project. Final wall design requires foundation soil bearing calculations based on the foundation and retained soil parameters listed above, considering site geometry, the wall height and foundation width for each wall. A minimum safety factor of 2.5 against a bearing capacity failure is required per AASHTO for flexible earth reinforced walls.

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017

5. Recommendations (Continued)

The provided Mainline Plan and Cross Sections show the proposed MSE walls vary in height up to a maximum of approximately 28 feet, resulting in relatively high applied foundation loading conditions, estimated to range generally from over 3,000 psf to 5,000 psf. If the MSE wall applied foundation pressure in the final design exceeds the maximum allowable design soil bearing capacity, the wall should be constructed to a height equivalent to the allowable bearing pressure, and installation temporarily halted for 30 days. After the 30 day waiting period, the wall may be completed to its final height.

Type II Foundation Backfill Material. Due to the proximity of the groundwater to the bottom of wall elevation at the location of boring B-2, we recommend a minimum 12-inch thick layer of Type II Foundation Backfill Material be placed below the bottom of the wall in the area of boring B-2.

Settlement. Preliminary settlement calculations were performed for the MSE Retaining Wall #1 at the south bridge abutment at about station 142+00, which represents the apparent worse case foundation loading condition due to the height of the wall. At this location the wall is located on the west side of the trail and is approximately 28 feet in height. A 2.0(H):1.0(V) soil slope down to the existing ground supports the trail on the east side. The approximate magnitude of elastic foundation settlement was calculated using soil modulus values estimated from correlations with corrected standard penetration resistances (N_{60}) for the subsurface profile at the location of boring B-3. Two different foundation loading conditions were utilized, one for an applied bearing pressure at the base of the wall using a unit weight of 135 pcf for the select reinforced zone granular backfill and a second using 135 percent of the backfill weight to represent a possible upper limit for the wall loading. These loading conditions result in foundation contact pressures of 3,780 and 5,040 psf, respectively, at the base of the wall beneath the 28-foot high embankment.

Initial settlement calculations were performed for the embankment loads according to the FHWA EMBANK program manual and elastic solutions developed by Poulos and Davis (1978). The settlement values are taken as the summation of individual layer strains due to added stress from the embankment (MSE wall) loads. Calculations using this method show maximum elastic settlements of 14.1 and 18.8 inches for the two loading conditions. These settlement values likely over estimate the actual amount of settlement since the program cannot exactly model the wall geometry and the values represent settlement calculated along the centerline of a long continuous embankment. Actual settlement should be significantly less at the end abutment.

Retaining Wall Foundation Investigation Report (ASD) SR 54 Multi-Use Trail & Bridge, Fayette County PI No. 0012878 September 16, 2017

5. Recommendations (Continued)

Settlement was also calculated using an internal elastic settlement program (MSETT), which allows the wall foundation to be modeled as an individual footing and also is capable of calculating settlement at various points within the foundation footprint. Settlement was calculated for a long embankment by this method using the Westergaard stress distribution and embankment cross section geometry generally equivalent to the MSE wall section at the abutment. Maximum total elastic foundation settlements along the centerline of the embankment were calculated at 10.8 inches for the 3,780 psf load and 14.4 inches for 5,040 psf. Settlement values at the abutment (end of the embankment) were found to be 6.3 and 8.4 inches, respectively.

The settlement calculations noted above are attached for reference. Based on our preliminary analysis, we expect total elastic settlement for MSE Retaining Wall #1 at the south bridge abutment will range approximately from 6 to 11 inches, depending upon the actual loading conditions. Settlement of MSE Retaining Wall #1 at the north abutment should be significantly less, since the maximum wall height is only 17 feet and the foundation footprint is smaller. The elastic settlement should represent the major component of total settlement, since the bearing soils are generally granular and very little consolidation settlement is expected.

Settlement Monitoring. An initial waiting period of 30 days is recommended to allow for completion of at least 90 percent of estimated settlement beneath the MSE wall at the bridge end bents. The majority of the settlement should occur during construction of the MSE walls and the amount of settlement remaining after completion of filling should not be significant. We recommend monitoring of MSE wall settlement during construction to confirm the expected performance and determine the final waiting period necessary. Minimal instrumentation to monitor settlement should consist of settlement plates installed at the interface of the wall fill and the existing ground surface.

<u>Restrictions.</u> During MSE wall construction, installation of vertical casing through the reinforced fill is required for subsequent pile installation at the bridge abutments (end bents). Casing will prevent damage to or interference with the MSE wall reinforcement elements.

Larry D.Mullins, P.E.

Prepared By:

Attachments: Boring Locations – Mainline Plan Drawing Nos. 13-08 & 13-09 Key to Symbols and Descriptions Soil Test Boring Records (B-1 through B-5) Laboratory Soil Test Reports Settlement Calculations

MAJOR DIVISIONS		GR SYN	GROUP SYMBOLS TYPICAL NAMES					Undisturbed S	ample		Auger Cuttings			
	GRAVELS (More than 50% of coarse fraction is			GW	Well grad mixtures,	led gravels, little or no	gravel - sand fines.	X	Standard Penetration Test or Dynamic Cone Penetration Test			Bulk Sample		
				GP	Poorly graded gravels or grave - sand mixtures, little or no fines.				Rock Core			Crandall Sampler		
COARSE	LARGER than the No. 4 sieve size)	GRAVELS WITH FINES		GM	Silty grav	els, gravel	- sand - silt mixtures.		Dilatometer			Pressure Meter		
GRAINED SOILS	GRAINED SOILS			GC	Clayey gravels, gravel - sand - clay mixtures.				Packer		0	No Recovery		
(More than 50% of material is LARGER than	C 43750	CLEAN		sw	Well grad or no fine	led sands, g es.	ravelly sands, little	¥	Water Table at time of boring					
No. 200 sieve size)	SAINDS (More than 50% of	(Little or no fines	s)	SP	Poorly graded sands or gravelly sands,									
,	coarse fraction is				little or no fines.			Correlation of Standard Penetration Resistance						
	the No. 4 Sieve	SANDS WITH	I	SM	Silty sands, sand - silt mixtures				CANTA P		sity T	SUT & CLAY		
	Size)	FINES	111					+	No of Blows	Relative Density		No of Blows	Consistency	
		amount of fines)		SC	Clayey s	ayey sands, sand - clay mixtures.			0 - 4	Very Loose	\vdash	0 - 2	Very Soft	
					Inorganic	silts and very	fine sands, rock flour,		5 - 10	Loose	-	3 - 4	Soft	
				ML	silty of clayey fine sands or clayey silts and with slight plasticity.		s or clayey silts and		11 - 30 Medium Dense		5 - 8		Firm	
	SILTS AT			CT	Inorganic lays of low to medium plasticity,			31 - 50	Dense		9 - 15	Stiff		
ETNIE	(Liquid limit	LESS than 50)			clays.	hays, sandy c	sandy clays, silty clays, lean		Over 50	Very Dense		16 - 30	Very Stiff	
GRAINED				OT	Organic silts and organic silty clays of							31 - 50	Hard	
SOILS			<u> </u>		low plast	icity.	C					Over 50	Very Hard	
(More than 50% of	re than 50% of			мн	Inorganic silts, micaceous or					· · · · · · · · · · · · · · · · · · ·				
SMALLER than No. 200 sieve SILTS AND CLAYS				elastic si Inorganio	ts. clays of hi	gh plasticity, fat	$\frac{1}{1}$	Correlation of Dynamic Cone Penetration Resistance with Relative Density and Consistency (Piedmont Residual Soils)						
size)	(Liquid limit GI	EATER than 50)		CH OP	clays		, J,	SAND & GRAVEL			SILT & CLAY			
			B∰ S		Organic clays of medium to high plasticity, organic silts.				No. of Blows	Relative Density		No. of Blows	Consistency	
				On					0 - 4	Very Loose		0 - 2	Very Soft	
HIG	HI V ORGANIC S	S TIO	212 2	тα	Pest and	other highly	organic soils		5 - 15	Loose		3 - 4	Soft	
			6 54	11	1 (at any				16 - 30	Medium Dense		5 - 10	Firm	
	FILL				Fill			_				11 - 30	Stiff	
								+					54 5	
BOUNDARY CI	LASSIFICATION	<u>S</u> : Soils possessi combinations	ng char of grou	acteristi p symbo	cs of two ols.	groups are	designated by		KEY	Y TO SYI	М	BOLS A	AND	
SILT	OR CLAY	SA	ND	1	GRA	VEL	Cobbles Boulders			DESCRI	[P	TIONS		
		Fine 1	Medium	Coarse	Fine	Coarse								
D-6	No.	0.200 No.40 U.S. STAN) N DARD	SIEVE	size	/4 ^m 3	" <u>12</u> "		e ſ	ACC		UR		
<u>Reference:</u> The U 3-357 Vol. 1. Ma	unned Son Classi arch, 1953 (Revise	d April 1960)	Corps o	oi Engin	eers, U.S.	Army Leo	unical Memorandum No	7	time to				_	

_									
CO	NTRAC	TED WITH: <u>GeoSystems Engineering, Inc</u>	2.						BORING NO.: <u>B-1</u>
		NAME: Fayetteville Pedestrian Bridge	in a Ca	Inc	D			0	DATE: June 25, 2015
JOE	<u> </u>	20014.003.14 DRILLER. Gable Drill	ing Co.	mc.	ĸ		JME 33	0	
	ELEV.	DESCRIPTION	DEPTH in	NO	TYPE	SAMPLE	S RECOV	W	NOTES
	-	TOPSOIL FILL-Medium dense, brown orange red, clayey SAND		1		7-9-8	10		
	- 890 -		5	2		3-5-6	14	-	
-886 -	-	RESIDUUM-Loose, brown orange red, clayey SAND		3		3-5-5	12	-	
-000	- 885	Stiff, yellowish red, sandy SILT (MH)		4		4-5-7	18	23	LL=57, PL=45, PI=11
	-								
	- - 880 -	Medium dense, olive gray, silty SAND		5		3-5-6	14	-	
	-								
	- 875	Loose, olive gray, silty SAND	20	6		3-5-5	12		
	-	BORING TERMINATED AT 20 FEET							No groundwater encountered a time of boring
	- 870 -		25						
	-								
	- 865 -		30						
	-								
	- 860 -		35						
	-								BOW-Bottom of Wall#1
	- 855 -		40						LL-Liquid Limit PL-Platic Limit PI-Plasticity Index

Inta, GA 3 ce: 404.24 CONT PROJ JOB N	30340 241.8722 TRAC JECT			BC	DRI	NG L	OG	
CONT PROJ JOB N	TRAC JECT						<u> </u>	
	JECT	TED WITH: GeoSystems Engineering, Inc						BORING NO.: B-2
		NAME: Fayetteville Pedestrian Bridge						DATE: June 25, 2015
EI	NO.: _	20014.003.14 DRILLER: Gable Drill	ing Co.	Inc.	R	IG:	CME 550	_ LOGGED BY: Larry
	ELEV.	DESCRIPTION	DEPTH in FEET	NO.	TYPE	SAMPLE BLOWS/6"	S RECOV. W	NOTES
-		\TOPSOIL FILL-Loose, brown orange red, clayey SAND		1		1-2-3	12	
- 87	875 -	Loose, yellowish brown, clayey SAND	<u></u>	2		2-4-6	14	Groundwater encountered at 5
- 8'	870 -			3		2-3-6	12	feet at time of boring
-		RESIDUUM-Very loose, brown orange, silty SAND	10	4		1-2-2	12	
- - - 81	365 ·	Loose dark vellowish brown silty						
-		SAND	15	5		3-3-4	18	
- 8(360			-				
-	-		20	6		3-4-4	12	
	855 -	Medium dense, brown orange, silty						
-		SAND	25	7		6-8-8	12	
- 8!	850							
-			30	8		5-10-13	18	
- 84	845					7 10 15	19	
-			35	9		1-12-15	18	
- 84	340	Medium dense, brown orange red, silty		10		5-6.8	14	BOW-Bottom of Wall#1
-		עוואפ	40	10		5-0-8	14	
Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sh	leet	2	of	2
<u> </u>		_	~	_

OJECT NAME: Fayetteville Pedestrian Bridge DATE:	BORING NO.: B-2			
3 NO.: 20014.003.14 DRILLER: Gable Drilling Co. Inc. RIG: CME 550 LOGGED BY: ELEV. DESCRIPTION DEPTH PEET SAMPLES NOTE #35 PWR-Very dense, black orange red, partially weathered rock 11 25:50.5" 12 -830 AUGER REFUSAL AT 48 FEET 50 - - - - -825 - - - - - - - - -820 -	e 25, 2015			
ELEV. DESCRIPTION Description SAMPLES NOTE -835 PWR-Very dense, black orange red, partially weathered rock	Larry			
Purce Description FEET No. Type BLOWsie* RECOV. w NO.				
-835 PWR-Very dense, black orange red, partially weathered rock 11 25-50/5" 12 -830 AUGER REFUSAL AT 48 FEET - - -830 AUGER REFUSAL AT 48 FEET - -820 - - -820 - -820 - -820 - -810 - -810 -	5			
audie 45 11 25-50/5" 12				
830 AUGER REFUSAL AT 48 FEET 50 -825 50 -825 - -820 - -820 - -815 - -816 - -810 - -810 -				
-830				
830 AUGER REFUSAL AT 48 FEET 50				
300 AUGER REFUSAL AT 48 FEET 50 50				
-825 -826 -826 -820 -820 -820 -820 -815 -815 -810				
55 820 60 60 815 816 70				
-810				
- 810 - 70				
. 70				
- 805				
80				
-795				
. 85				

Accura 3200 Presi	a Engin idential Dr	neering and Consulting Services, In	nc.		וחר				Sheet 1 of 2
Office: 40	4.241.8722	2		BC	JRI	NG LO	JG		
со	NTRAC	TED WITH: GeoSystems Engineering, Inc							BORING NO.: B-3
PR	OJECT	NAME: Fayetteville Pedestrian Bridge		.		10.		0	DATE: June 25, 2015
JOI	B NO.:	_20014.003.14 DRILLER:Gable Drill	ing Co.	Inc.	ĸ	IG:	CME 550	0	LOGGED BY: Larry
	ELEV.	DESCRIPTION	DEPTH SAMPLES					w	NOTES
		TOPSOIL		1		2 / 9	12		
	- 890	FILL-Medium dense, reddish brown, clayey SAND				5-4-0	12		
	-							-	
			5	2		4-6-6	14		
	- 885								
	-			3		5-6-5	12		
	-	Loose, reddish brown, clayey SAND							
BOW=882 -	-		10	4		2-3-5	14		
	- 880								
	-								
	-	RESIDUUM-Loose, gray orange, silty						-	
	-	SAND	15	5		2-2-3	14		
	- 875								
	-								
	-	Loose brown orange silty SAND							
	-	Loose, brown brange, sity SAND	20	6		2-2-3	12		
	- 070								
	- 870								
	-		-						feet at time of boring
	-			7		4-4-4	12		
	-		25						
	- 865								
	-								
	-	Medium dense, reddish yellow, silty SAND		8		4-5-11	18		
	-		30		/				
	- 860								
	_								
	-	Loose, brown orange silty SAND		- -		3-5-5	14		
	-		35	É		5-5-5			
	- 855								
									BOW-Bottom of Wall#1
		Medium dense, brown orange red, silty							
	-	SAND	40	10	7	6-9-11	14		
	- 850								
	-	Medium dense, brown orange red, silty							

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722	BORING LOG		Sheet 2 of
CONTRACTED WITH: GeoSystems Engineering, Inc.		BORING NO.:	B-3

JJECI	NAME: Fayetteville Pedestrian Bridge							DATE:	June 2	5, 2015
3 NO.:	20014.003.14 DRILLER: Gable 1	Drilling Co.	Inc	R	IG:	CME 55	0		BY:	Larry
	DESCRIPTION	DEPTH			SAMPLE	S		ļ ,		
ELEV.		FEET	NO.	TYPE	BLOWS/6"	RECOV.	W		NOTES	
	SAND		 				-			
-		45	11		3-7-10	12				
		45								
- 845										
-	PWR-Very dense, orange brown.									
	partially weathered rock	50	12		20-50/4"	12				
		50								
- 840										
-	AUGER REFUSAL AT 52 FEFT									
		55								
- 835										
		60								
- 830										
-										
-		65								
- 825										
		70								
- 820										
		75								
- 815										
		80								
- 810										
-										
_										
		85								

Sheet 2 of 2

a, GA 404	A 30340			BC	DRI	NG LO	C		
		TED WITH: Coosystems Engineering Inc							
		NAME: Eavetteville Pedestrian Bridge	•						DATE · June 25, 2015
IOB		20014 003 14 DRILLER: Gable Drill	ing Co	Inc	R	IG [.] (ME 55	0	LOGGED BY: Larry
с г					_ `		-	0	
	ELEV.	DESCRIPTION	in	NO	TVDE	SAMPLE	S RECOV	\A/	NOTES
96		FILL-Gravel	FEEI	NO.	TIFE	BLOWS/0	RECOV.	vv	
-	- 895	FILL-Medium dense, brown orange red, clayey SAND	-	1		2-5-6	12	-	
-		RESIDUUM-Medium dense, brown orange red, clayey SAND	5	2		5-8-14	14	-	
	- 890								
-		Stiff, yellowish red, sandy SILT (ML)		3		3-4-6	12	_	LL=49, PL=41, PI=8
			10	4		3-5-8	18		
	- 885								
+									
ł									
ŀ			15	5	/	3-5-6	14		
	- 880							1	
-		Loose alive grou silty CAND							
-		Loose, onve gray, sitty SAND		6		2-3-4	12	1	
ŀ			20		7			1	
	- 875								
-				7		2-4-4	12	1	
-			25	,	/			-	
╞	- 870								
Ī			¥.						Groundwater encountered at 2
		Medium dense, white brown orange, silty				4.6.9	10	1	leet at time of boring
-		SAND	30	8		4-6-8	18		
	- 865								
ŀ									
-								-	
Ī			35	9		3-6-7	18		
	- 860								
									BOW-Bottom of Wall#2
-									LL-Liquid Limit
ŀ			40	10		3-4-8	14		PL-Platic Limit
ŀ			40		/			1	PI-Plasticity Index
	- 855			1					

Accura Engineering and Consulting Services, Inc. 3200 Presidential Drive

3200 Presidential Drive Atlanta, GA 30340 Office: 404.241.8722

BORING LOG

Sheet	2	of	2
-------	---	----	---

JECT	NAME: Favette	DATE: June 25, 20									
3 NO.:	20014.003.14	LOGGED BY:	Larrv								
					1			-0	<u> </u>		Barry
ELEV.		DESCRIPTION		in FFFT	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES	
-	Medium dens		red silty								
-	SAND	e, black blange	ieu, siity	45	11		5-8-10	12			
				45							
- 850											
-											
					12		3 4 7	12			
-				50	12		5-4-7	12			
- 845											
	Medium dens	e, light gray, si	lty SAND		 						
				55	13		4-6-7	14			
- 840											
					14		5-7-7	14			
	BORING TEI	RMINATED at	60 FEET	60							
- 835											
				65							
- 830											
-											
-											
-				70							
- 825											
-				75							
- 820											
				80							
- 815											
-					-						
-					1						
-				95							
				00	1						

Accura	a Engi	neering and Consulting Services, I	nc.						Sheet 1 of 1
3200 Pres Atlanta, G Office: 40	A 30340 4.241.8722	1ve 2		<u>B(</u>	DRI	NG L(<u>DG</u>		
CO PR	NTRAC	CTED WITH: <u>GeoSystems Engineering, Inc</u> NAME: Favetteville Pedestrian Bridge	2.						BORING NO.: <u>B-5</u> DATE: June 25, 2015
JOI	B NO.:	20014.003.14 DRILLER: Gable Drill	ing Co.	Inc.	R	IG:	CME 55	0	LOGGED BY: Larry
		DECODIDITION	DEPTH			SAMPLE	S		NOTEO
	ELEV.	DESCRIPTION	in FEET	NO.	TYPE	BLOWS/6"	RECOV.	W	NOTES
BOW=904 -	- 905	TOPSOIL RESIDUUM-Very stiff to stiff, red, sandy SILT (ML)		1		4-7-16	10	-	
	-		5	2		4-7-8	12	13	LL=48, PL=34, PI=14
	900 	Medium dense, brown orange red, silty SAND		3		4-8-9	12	-	
	-		10	4		3-5-6	18	-	
	- 895 - -			-					
	-		15	5		4-6-7	14	-	
	- 890 - -			-					
	- - - 885	BORING TERMINATED AT 20 FEET	20	6		4-4-7	12	-	No groundwater encountered at time of boring
	-			-					
	- 880 -								
	- - - 875 -		30	-					
	- - - 870		35						
	-		40						BOW-Bottom of Wall#2 LL-Liquid Limit PL-Platic Limit PI-Plasticity Index
	- 865 -			-					

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayettevill	e Pedestrian Bri	idge/Walking Ti	rail		
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-4		Test Date:	08/02/17	Checked By:	MCM
	Depth :	9.5 ft		Test Id:	286071		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	t		
	Sample Cor	mment:					

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayetteville	e Pedestrian Bri	dge/Walking Ti	rail		
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-5+S-6 C	omposite	Test Date:	08/02/17	Checked By:	MCM
	Depth :	14.5-19.5	ft	Test Id:	286072		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, olive gra	ay silty sand			
	Sample Cor	mment:					

	Client:	GeoSysten	ns Engineering,	Inc.			
	Project:	Fayettevill	e Pedestrian Br	idge/Walking T	rail		
nd	Location:	Fayettevill	e, Georgia			Project No:	GTX-306785
II9	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh
	Sample ID:	S-2+S-3 C	Composite	Test Date:	08/02/17	Checked By:	MCM
	Depth :	4.5-7.0 ft		Test Id:	286073		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, yellowis	sh brown claye	y sand		
	Sample Co	mment:					

Sand/Gravel Hardness : ---

#200

0.075

38

	Client:	GeoSystems Engineering, Inc.								
2	Project:	Fayetteville	ayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
1	Boring ID:	B-2		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-6		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	19.5 ft		Test Id:	286074					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, dark ye	yellowish brown silty sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 #10 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 81.9 18.1 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.7863 mm D₃₀=0.1472 mm 4.75 100 #4 D₆₀ = 0.3850 mm $D_{15} = N/A$ #10 2.00 99 D₅₀ = 0.2894 mm $D_{10} = N/A$ #20 0.85 88 #40 0.42 63 $C_c = N/A$ $C_u = N/A$ 45 # 60 0.25 **Classification** 30 #100 0.15 <u>ASTM</u> N/A #200 0.075 18 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSyster	GeoSystems Engineering, Inc.							
	Project:	Fayettevill	e Pedestrian Br	idge/Walking T	rail					
ind	Location:	Fayettevill	e, Georgia			Project No:	GTX-306785			
H	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-3+S-4 (Composite	Test Date:	08/02/17	Checked By:	MCM			
	Depth :	7.0-9.5 ft		Test Id:	286075					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, reddish	ish brown clayey sand						
	Sample Comment:									

	% Cobb	le	% Gravel		% Sand		% Silt & Clay Size		
	_		2.4		57.6			40.0	
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies		Coefficients			
						D ₈₅ = 0.79	48 mm	$D_{30} = N/A$	
3/4in	19.00	100				$D_{60} = 0.27$	15 mm	$D_{15} = N/A$	
1/2in	12.50	98			-	$D_{\rm E0} = 0.16$	47 mm	$D_{10} = N/A$	
#4	4.75	98			-	0.10	47 11111		
#10	2.00	96			-	$C_u = N/A$		$C_{C} = N/A$	
#20	0.85	87			-		<u>Class</u>	sification	
#40	0.42	70			-	ASTM	N/A		
# 60	0.25	58			1				
#100	0.15	48				ΔΔSHTO	Silty Soils (1	$A_{-4}(0)$	
#200	0.075	40				1.001110	AASITIO SIITY SUIS (A-4 (0))		
					_				
						Sample/Test Description Sand/Gravel Particle Shape :			
						Sand/Grav	vel Hardness	:	

	Client:	GeoSystems Engineering, Inc.							
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail				
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
3	Boring ID:	B-3		Sample Type:	bag	Tested By:	twh		
	Sample ID: S-8			Test Date:	08/02/17	Checked By:	MCM		
	Depth :	29.5 ft		Test Id:	286076				
	Test Comm	ent:							
	Visual Desc	ription:	Moist, reddish	yellow silty sar	nd				
	Sample Cor	mment:							

Particle Size Analysis - ASTM D422 #200 #100 3/8in 60 #10 #20 #40 #4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 0.01 0.001 1000 10 1 0.1 Grain Size (mm) % Cobble % Silt & Clay Size % Gravel % Sand 16 83.6 14 8

			1.0				03.0
Sieve Name	Sieve Size, mm	Percen	t Finer	Spec. Percent	(Complies	
3/8in	9.50	10	0				
#4	4.75	9	3				
#10	2.00	9	5				
#20	0.85	8	1				
#40	0.42	5	7				
# 60	0.25	3	5				
#100	0.15	2	1				
#200	0.075	1!	5				

	1 110							
<u>Coefficients</u>								
D ₈₅ =0.9104 mm	D ₃₀ =0.1935 mm							
D ₆₀ =0.4570 mm	$D_{15} = 0.0761 \text{ mm}$							
D ₅₀ =0.3554 mm	D ₁₀ =N/A							
C _u =N/A	C _c =N/A							

ASTM N/A

AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	GeoSystem	GeoSystems Engineering, Inc.							
	Project:	Fayetteville	e Pedestrian Br	idge/Walking Ti	rail					
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
9	Boring ID:	B-4		Sample Type:	bag	Tested By:	twh			
-	Sample ID:	S-3+S-4 C	omposite	Test Date:	08/02/17	Checked By:	MCM			
	Depth :	7.0-9.5 ft		Test Id:	286077					
	Test Comm	ent:								
	Visual Description: Moist, yellowis			sh red sandy sil	t					
	Sample Cor	nment:								

Client:	GeoSystems Engineering, Inc.							
Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail						
Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
Boring ID:	B-4		Sample Type:	bag	Tested By:	twh		
Sample ID: S-7			Test Date:	08/02/17	Checked By:	MCM		
Depth :	24.5 ft		Test Id:	286078				
Test Comm	ent:							
Visual Description: Moist, olive gr			ay silty sand					
Sample Cor	mment:							

Particle Size Analysis - ASTM D422 #100 #200 60 #20 #40 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 70.8 29.2 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.6957 mm $D_{30} = 0.0792 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.3388 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = 0.2535 \text{ mm}$ $D_{10} = N/A$ #20 0.85 92 68 #40 0.42 $C_c = N/A$ $C_u = N/A$ 50 # 60 0.25 **Classification** 39 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---

	Client:	lient: GeoSystems Engineering, Inc.								
-	Project:	Fayetteville	e Pedestrian Br	idge/Walking T	rail					
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
9	Boring ID: B-4			Sample Type:	bag	Tested By:	twh			
	Sample ID: S-13+S-14 Composite		Test Date:	08/02/17	Checked By:	MCM				
	Depth :	54.5-59.5	ft	Test Id:	286079					
	Test Comment: Visual Description: Moist, light gra									
				ay silty sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422 #100 #200 60 #10 #40 #20 4 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 71.1 28.9 ____ Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 1.4299 mm $D_{30} = 0.0847 \text{ mm}$ 4.75 100 #4 D₆₀ = 0.5754 mm $D_{15} = N/A$ #10 2.00 94 D₅₀ = 0.3948 mm $D_{10} = N/A$ #20 0.85 71 51 #40 0.42 $C_u = N/A$ $C_c = N/A$ # 60 0.25 42 **Classification** 35 #100 0.15 <u>ASTM</u> N/A #200 0.075 29 AASHTO Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

	Client:	ient: GeoSystems Engineering, Inc.							
	Project: Fayetteville Pedestrian Bridge/Walking Trail								
0	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
9	J Boring ID: B-5 S			Sample Type:	bag	Tested By:	twh		
	Sample ID:	: S-1+S-2 Composite		Test Date:	08/02/17	Checked By:	MCM		
	Depth :	1.0-4.5 ft		Test Id:	286080				
	Test Comm	ent:							
	Visual Description: Moist, red san			dy silt					
	Sample Cor	mment:							

Particle Size Analysis - ASTM D422 #100 #200 60 #40 #20 0 # 100 90 80 70 60 Percent Finer 50 40 30 20 10 0 100 1000 10 1 0.1 0.01 0.001 Grain Size (mm) % Silt & Clay Size % Cobble % Gravel % Sand 0.0 46.3 53.7 Sieve Name Sieve Size, mm Percent Finer Spec. Percent Complies **Coefficients** D₈₅ = 0.4722 mm $D_{30} = N/A$ 4.75 100 #4 D₆₀ = 0.1484 mm $D_{15} = N/A$ #10 2.00 100 $D_{50} = N/A$ $D_{10} = N/A$ #20 0.85 98 83 #40 0.42 $C_c = N/A$ $C_u = N/A$ # 60 0.25 68 Classification Sandy Silt (ML) #100 60 0.15 <u>ASTM</u> #200 0.075 54

Sample/Test Description
Sand/Gravel Particle Shape :

AASHTO Clayey Soils (A-7-5 (6))

	Client:	GeoSysten	GeoSystems Engineering, Inc.							
	Project:	Fayetteville	e Pedestrian Br							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
3	Boring ID:	B-5		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-5		Test Date:	08/02/17	Checked By:	MCM			
	Depth :	14.5		Test Id:	286081					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, red silty	/ sand						
	Sample Cor	mment:								

Particle Size Analysis - ASTM D422

	Client:	GeoSysten	GeoSystems Engineering, Inc.							
	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail							
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785			
9	Boring ID:	B-1		Sample Type:	bag	Tested By:	twh			
	Sample ID:	S-4		Test Date:	08/04/17	Checked By:	MCM			
	Depth :	9.5 ft		Test Id:	286109					
	Test Comm	ent:								
	Visual Desc	ription:	Moist, yellowis	sh red sandy sil	lt					
	Sample Cor	mment:								

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	B-1	9.5 ft	23	57	46	11	-2.1	Sandy Elastic silt (MH)

Sample Prepared using the WET method 18% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: RAPID Toughness: LOW

	Client:	GeoSystems Engineering, Inc.							
3	Project:	Fayetteville	Fayetteville Pedestrian Bridge/Walking Trail						
	Location:	Fayetteville	e, Georgia			Project No:	GTX-306785		
	Boring ID:	B-4		Sample Type:	bag	Tested By:	n/a		
	Sample ID:	Sample ID: S-3+S-4 Composite		Test Date:	08/04/17	Checked By:	MCM		
	Depth :	7.0-9.5 ft		Test Id:	286112				
	Test Comm	ent:							
	Visual Description: Moist, yellowis			h red sandy sil	t				
	Sample Cor	mment:							

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3+S-4 Composite	B-4	7.0-9.5 ft	22	49	41	8	-2.4	Sandy Silt (ML)

Sample Prepared using the WET method 19% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

Client:	GeoSyster	GeoSystems Engineering, Inc.					
Project	: Fayettevill	e Pedestrian E	Bridge/Walking T	rail			
Locatio	n: Fayettevill	e, Georgia			Project No:	GTX-306785	
Boring	ID: B-5		Sample Type:	bag	Tested By:	twh	
Sample	e ID: S-1+S-2 (Composite	Test Date:	08/04/17	Checked By:	MCM	
Depth :	1.0-4.5 ft		Test Id:	286111			
Test Co	mment:						
Visual I	Description:	Moist, red sa	andy silt				
Sample	Comment						

Atterberg Limits - ASTM D4318

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-1+S-2 Composite	B-5	1.0-4.5 ft	13	48	34	14	-1.5	Sandy Silt (ML)

Sample Prepared using the WET method 17% Retained on #40 Sieve Dry Strength: MEDIUM Dilatancy: SLOW Toughness: LOW

ELASTIC SETTLEMENT

Project:	SR-54 Multi-Use Trail & Bridge	Date:	8/11/2017
Location:	Fayette County , Georgia	Engineer:	LDM
Analysis:	Elastic settlements		
Description:	Elastic settlements based on moduli interpreted from SPT data from be	oring B-3	

Calculation performed as outlined in FHWA EMBANK user manual. Principle of supersition is used to combine loads from two halves of embankment. Settlement calculated for ten intervals divided evenly over depth of analysis (as input).

Depth of Analysis = 50 feet

<u>[</u>	Dimensio	<u>15</u>
Length, a =	51	feet
Length, b =	57.5	feet
Height, H =	28	feet
Fill, unit weight, γ =	135	pcf
Load, P =	3780	psf

Embankment parameters (Poulos and Davis, 1978).

				Layer displacment, ρ					
Depth, z	Layer thickness, Δz	N60 Value	Elastic moduli E = 12 X N60	X = 0	X = 14.375	X = 28.75	X = 43.125	X = 57.5	
(ft)	(ft)	(bpf)	(ksf)	in	in	in	in	in	
5	5	12	144	0.788	0.962	1.182	1.404	1.619	
10	5	8	96	1.183	1.384	1.702	2.026	2.316	
15	5	6	72	1.583	1.785	2.178	2.588	2.922	
20	5	6	72	1.590	1.737	2.091	2.469	2.754	
25	5	10	120	0.959	1.018	1.204	1.408	1.555	
30	5	20	240	0.481	0.498	0.578	0.668	0.731	
35	5	13	156	0.741	0.749	0.855	0.975	1.058	
40	5	27	324	0.356	0.352	0.395	0.445	0.479	
45	5	23	276	0.416	0.404	0.446	0.495	0.530	
50	5	100	1200	0.095	0.091	0.099	0.108	0.115	

 Cumulative displacement (in):
 8.194
 8.978
 10.730
 12.587

References: FHWA. (2002). Geotechnical Engineering Circular No. 5: Evaluation of Soil and Rock Properties. FHWA (1993). EMBANK User Manual

Poulos, H.G. and Davis, E.H. (1978). Elastic Solutions for Soil and Rock Mechanics

ELASTIC SETTLEMENT

Project:	SR-54 Multi-Use Trail & Bridge	Date	e:	8/11/2017
Location:	Fayette County , Georgia	Eng	gineer:	LDM
Analysis:	Elastic settlements		_	
Description:	Elastic settlements based on moduli interpreted from SPT data from b	oring B-3		

Calculation performed as outlined in FHWA EMBANK user manual. Principle of supersition is used to combine loads from two halves of embankment. Settlement calculated for ten intervals divided evenly over depth of analysis (as input).

Depth of Analysis = 50 feet

	Dimensio	<u>ns</u>
Length, a =	51	feet
Length, b =	57.5	feet
Height, H =	28	feet
Fill, unit weight, γ =	180	pcf
Load, P =	5040	psf

Embankment parameters (Poulos and Davis, 1978).

14.307

16.782

				Layer displacment, ρ					
Depth, z	Layer thickness, Δz	N60 Value	Elastic moduli E = 12 X N60	X = 0	X = 14.375	X = 28.75	X = 43.125	X = 57.5	
(ft)	(ft)	(bpf)	(ksf)	in	in	in	in	in	
5	5	12	144	1.050	1.283	1.577	1.872	2.159	
10	5	8	96	1.578	1.845	2.270	2.702	3.089	
15	5	6	72	2.111	2.379	2.904	3.451	3.896	
20	5	6	72	2.121	2.316	2.787	3.292	3.673	
25	5	10	120	1.279	1.357	1.606	1.878	2.073	
30	5	20	240	0.642	0.663	0.771	0.891	0.975	
35	5	13	156	0.989	0.998	1.140	1.300	1.410	
40	5	27	324	0.475	0.470	0.527	0.593	0.639	
45	5	23	276	0.555	0.539	0.594	0.660	0.707	
50	5	100	1200	0.127	0.121	0.131	0.144	0.153	

Cumulative displacement (in): 10.925 11.971

References: FHWA. (2002). Geotechnical Engineering Circular No. 5: Evaluation of Soil and Rock Properties.

FHWA (1993). EMBANK User Manual

Poulos, H.G. and Davis, E.H. (1978). Elastic Solutions for Soil and Rock Mechanics

GEOSYSTEMS ENGINEERING FOOTING SETTLEMENT PROGRAM

SR-54 MULTI-USE TRAIL & BRIDGE STA 142+00 WESTERGAARD SETTLEMENT BORING B-3 135PCF

STRUCTURAL DATA

FOOTING NUMBER: 1

FOOTING LENGTH: 49.0 FT FOOTING WIDTH: 100.0 FT FOOTING DEPTH: 3.0 FT LOAD: 18522.00 KIPS SURFACE BEARING PRESSURE: 3780.0 PSF X COORDINATE OF CENTER: 34.5 Y COORDINATE OF CENTER: 60.0

SOIL DATA

NUMBER OF LAYERS: 10 DEPTH TO WATER: 21.0 FT

LAYER NUMBER 1

DEPTH TO BOTTOM OF LAYER: 5.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 144000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 2

DEPTH TO BOTTOM OF LAYER: 10.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 96000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER .3

DEPTH TO BOTTOM OF LAYER: 15.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 4

DEPTH TO BOTTOM OF LAYER: 20.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 5

DEPTH TO BOTTOM OF LAYER: 25.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 120000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 6

DEPTH TO BOTTOM OF LAYER: 30.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 240000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 7

DEPTH TO BOTTOM OF LAYER: 35.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 156000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 8

DEPTH TO BOTTOM OF LAYER: 40.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 324000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 9

DEPTH TO BOTTOM OF LAYER: 45.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 276000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 10

DEPTH TO BOTTOM OF LAYER: 50.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 1200000. PSF UNIT WEIGHT: 180.0 PSF

****WESTERGAARD STRESS DISTRIBUTION *****

PREDICTED SETTLEMENT, POINT NUMBER 1 COORDINATES: X= 35. Y= 60.

STANDARD WESTERGAARD

MODIFIED WESTERGAARD

LAYER CUMULATIVE	INITIAL FINAL	FINAL SUBLAYER	SUBLAYER CUMUI	LATIVE
DEPTH	STRESS	STRESS	SETTLEMENT	
SETTLEMENT	STRESS	SETTLEMENT	SETTI	LEMENT
(FT)	(PSF)	(PSF)	(IN)	
(IN)	(PSF)	(IN)	(IN)	
********	* * * * * * * * * * *			
********	* * * * * * * * * * * * * * * * *	******		
* * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *		
4.9	882.00	4515.19	.061	
.617	4511.68	.060	.617	
TOTAL LAYER	<pre>X I ,CUMULATIVE </pre>	SETTLEMENT*****	** .617	*******
.01/		.01/	.01/	
9.7	1755.00	5019.08	.204	
2.764	5004.36	.203	2.757	
	-			
TOTAL LAYEF	R 2 , CUMULATIVE	SETTLEMENT*****	** 2.146	******
2./64		2.140	2.151	
14.7	2655.00	5557.28	.242	
5.316	5563.79	.242	5.307	
TOTAL LAYEF	R 3 , CUMULATIVE	SETTLEMENT*****	** 2.553	******

19.83555.007.5806150.14 3555.00 6124.23 .214 .216 7.585 TOTAL LAYER 4 , CUMULATIVE SETTLEMENT******* 2.264 ******* 24.7 4221.00 6491.08 .114
 24.7
 4221.00

 8.781
 6523.58
 .115 8.801 TOTAL LAYER 5 , CUMULATIVE SETTLEMENT******** 1.201 ******* 29.74809.006814.949.3116853.63.051 .050 9.341 .530 ******* TOTAL LAYER 6 , CUMULATIVE SETTLEMENT******* 34.8 10.033 5397.00 7172.20 .068 10.078 7214.20 .070 39.75985.007559.8010.3417598.83.030 .029 .030 10.393 TOTAL LAYER 8 , CUMULATIVE SETTLEMENT******* .308 ******* 6573.007974.198018.20.031 44.8 10.662 .030 8018.20 10.723 TOTAL LAYER 9 , CUMULATIVE SETTLEMENT******* .321 ******* 7161.00 8411.82 49.8 .006 10.728 8415.63 .006 10.790 TOTAL LAYER10 , CUMULATIVE SETTLEMENT******** .066 ******* PREDICTED SETTLEMENT, POINT NUMBER 2 COORDINATES: X= 35. Y= 11. STANDARD WESTERGAARD

MODIFIED WESTERGAARD

4

LAYER CUMULATIVE DEPTH SETTLEMENT	INITIAL FINAL STRESS STRESS	FINAL SUBLAYER STRESS SETTLEMENT	SUBLAYER CUMUI SETTLEMENT SETTI	LATIVE LEMENT
(FT) (IN) ********** *************************	(PSF) (PSF) ********** *************************	(PSF) (IN) ************************************	(IN) (IN) *	
4.9 .510	882.00 3457.36	3472.64 .043	.043 .508	
TOTAL LAYER .510 *****	1 ,CUMULATIVE	SETTLEMENT*****	*** .510 *** .508	*****
9.7 1.842	1755.00 3636.48	3650.28 .118	.118 1.831	
TOTAL LAYER 1.842 ****	2 ,CUMULATIVE ***********	SETTLEMENT*****	*** 1.331 **** 1.831	******
14.7 3.287	2655.00 4280.01	4275.82 .135	.135 3.273	
TOTAL LAYER 3.287 ****	3 ,CUMULATIVE ***********	SETTLEMENT*****	*** 1.445 **** 3.273	* * * * * * * *
19.8 4.543	3555.00 4991.68	4977.05 .120	.119 4.538	
TOTAL LAYER 4.543 ****	4 ,CUMULATIVE ***********	SETTLEMENT*****	*** 1.256 **** 4.538	* * * * * * * *
24.7 5.208	4221.00 5497.53	5480.29 .064	.063 5.211	
TOTAL LAYER 5.208 ****	5 ,CUMULATIVE ***********	SETTLEMENT*****	*** .665 **** 5.211	* * * * * * * *
29.7 5.504	4809.00 5950.79	5930.94 .029	.028 5.512	
TOTAL LAYER 5.504 ****	6 ,CUMULATIVE ***********	SETTLEMENT*****	*** .295 **** 5.512	* * * * * * * *
34.8 5.910	5397.00 6423.07	6401.92 .039	.039 5.926	

· · · · · ·

TOTAL LAYER 7 , CUMULATIVE SETTLEMENT******* .406 ******* 39.7 5985.00 6889.69 .017 6.085 6909.14 .017 6.105 .176 ******* TOTAL LAYER 8 ,CUMULATIVE SETTLEMENT******* 7391.42 44.8 6573.00 .018 6.272 7413.26 .018 6.296 .186 ******* TOTAL LAYER 9 , CUMULATIVE SETTLEMENT******* 49.8 7161.00 7904.79 .004 6.310 7906.69 6.335 .004 TOTAL LAYER10 ,CUMULATIVE SETTLEMENT******* .039 *******

→

GEOSYSTEMS ENGINEERING FOOTING SETTLEMENT PROGRAM

SR-54 MULTI-USE TRAIL & BRIDGE STA 142+00 WESTERGAARD SETTLEMENT BORING B-3 180PCF

STRUCTURAL DATA

FOOTING NUMBER: 1

FOOTING LENGTH: 49.0 FT FOOTING WIDTH: 100.0 FT FOOTING DEPTH: 3.0 FT LOAD: 24696.00 KIPS SURFACE BEARING PRESSURE: 5040.0 PSF X COORDINATE OF CENTER: 34.5 Y COORDINATE OF CENTER: 60.0

SOIL DATA

NUMBER OF LAYERS: 10 DEPTH TO WATER: 21.0 FT

LAYER NUMBER 1

DEPTH TO BOTTOM OF LAYER: 5.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 144000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 2

DEPTH TO BOTTOM OF LAYER: 10.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 96000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 3

DEPTH TO BOTTOM OF LAYER: 15.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 4

DEPTH TO BOTTOM OF LAYER: 20.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 72000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 5

DEPTH TO BOTTOM OF LAYER: 25.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 120000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 6

DEPTH TO BOTTOM OF LAYER: 30.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 240000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 7

DEPTH TO BOTTOM OF LAYER: 35.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 156000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 8

DEPTH TO BOTTOM OF LAYER: 40.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 324000. PSF UNIT WEIGHT: 180.0 PSF

LAYER NUMBER 9

DEPTH TO BOTTOM OF LAYER: 45.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 276000. PSF UNIT WEIGHT: 180.0 PSF

layer number 10

DEPTH TO BOTTOM OF LAYER: 50.0 FT THICKNESS: 5.00 FT MODULUS OF ELASTICITY: 1200000. PSF UNIT WEIGHT: 180.0 PSF

****WESTERGAARD STRESS DISTRIBUTION *****

PREDICTED SETTLEMENT, POINT NUMBER 1 COORDINATES: X= 35. Y= 60.

STANDARD WESTERGAARD

MODIFIED WESTERGAARD

LAYER	INITIAL	FINAL	SUBLAYER	LATIVE
CUMULATIVE	FINAL	SUBLAYER	CUMUI	
DEPTH	STRESS	STRESS	SETTLEMENT	
SETTLEMENT	STRESS	SETTLEMENT	SETTI	
(FT) (IN) ********** *************************	(PSF) (PSF) ********* **************************	(PSF) (IN) ************************************	(IN) (IN) *	
4.9	882.00	5726.26	.081	
.823	5721.57	.081	.822	
TOTAL LAYER	1 ,CUMULATIVE	SETTLEMENT*****	*** .823	* * * * * * * *
.823 ****	***********	* .822 *****	*** .822	
9.7	1755.00	6107.10	.272	
3.685	6087.47	.271	3.676	
TOTAL LAYER	2 ,CUMULATIVE	SETTLEMENT*****	*** 2.862	* * * * * * * *
3.685 ****	********	** 2.854 ****	**** 3.676	
14.7	2655.00	6524.70	.322	
7.088	6533.38	.323	7.076	
TOTAL LAYER	3 ,CUMULATIVE	SETTLEMENT****	*** 3.403	******

19.83555.0010.1067015.19 3555.00 6980.63 .285 .288 10.114 TOTAL LAYER 4 , CUMULATIVE SETTLEMENT******* 3.018 ******* 4221.00 7247.77 24.7 .151 11.708 7291.11 .154 11.735 TOTAL LAYER 5 , CUMULATIVE SETTLEMENT******* 1.601 ******* 11.708 ******************* 1.621 ******* 11.735 29.7 12.415 4809.00 7483.59 .067 7535.17 .068 12.454 TOTAL LAYER 6 ,CUMULATIVE SETTLEMENT******* .707 ******* 34.8 13.377 5397.00 7763.93 .091 .093 7819.94 13.437 TOTAL LAYER 7 , CUMULATIVE SETTLEMENT******* .962 ******* 39.7 5985.00 8084.73 .039 13.788 8136.77 .040 13.858 .411 ******* TOTAL LAYER 8 , CUMULATIVE SETTLEMENT******* 44.8 14.216 6573.00 8441.25 .041 8499.93 14.298 .042 TOTAL LAYER 9 , CUMULATIVE SETTLEMENT******* .428 ******* 7161.00 8828.76 49.8 .008 14.304 8833.85 .008 14.387 TOTAL LAYER10 , CUMULATIVE SETTLEMENT******** .088 ******* PREDICTED SETTLEMENT, POINT NUMBER 2 COORDINATES: X= 35. Y= 11.

MODIFIED WESTERGAARD

4

STANDARD WESTERGAARD

TNTTTAL FINAL SUBLAYER LAYER CUMULATIVE FINAL SUBLAYER CUMULATIVE DEPTH STRESS STRESS SETTLEMENT SETTLEMENT STRESS SETTLEMENT SETTLEMENT (FT) (PSF) (PSF) (IN) (PSF) (IN) (IN) (IN) ***** 4.9 882.00 4336.19 .058 .680 4315.82 .057 .678 .680 ******* TOTAL LAYER 1 , CUMULATIVE SETTLEMENT******* .678 9.7 1755.00 4282.04 .158 2.455 4263.64 .157 2.441 TOTAL LAYER 2 , CUMULATIVE SETTLEMENT******* 1.775 ******* 2.455 *********************** 1.763 ******** 2.441 14.7 4.382 2655.00 4816.09 .180 4821.69 4.364 .181 TOTAL LAYER 3 , CUMULATIVE SETTLEMENT******* 1.927 ******* 4.382 ************************ 1.923 ******** 4.364 19.8 .158 5451.07 3555.00 5470.57 6.057 .160 6.051 TOTAL LAYER 4 , CUMULATIVE SETTLEMENT******* 1.675 ******* 4221.00 5900.05 24.7 .084 6.944 5923.04 .085 6.948 .887 ******* TOTAL LAYER 5 ,CUMULATIVE SETTLEMENT******* 29.7 4809.00 6304.92 .037 7.338 .038 7.349 6331.39 .394 ******* TOTAL LAYER 6 ,CUMULATIVE SETTLEMENT******* 5397.00 6736.89 34.8 .052 6765.09 7.901 7.880 .053

TOTAL LAYER 7.880 *****	7 ,CUMULATIVE SE	TTLEMENT* 552	* * * * * * * *	.542 7.901	* * * * * * * *
39.7 8.114	5985.00 7217.18	7191.25 .023		.022 8.140	
TOTAL LAYER 8.114 *****	8 ,CUMULATIVE SE	TTLEMENT* 239	*******	.234 8.140	*****
44.8 8.362	6573.00 7693.35	7664.23 .024		.024 8.394	
TOTAL LAYER 8.362 *****	9 ,CUMULATIVE SE	TTLEMENT* .254	*****	.248 8.394	*****
49.8 8.414	7161.00 8155.25	8152.72 .005		.005 8.447	
TOTAL LAYER1 8.414 *****	0 ,CUMULATIVE SE	TTLEMENT* • .052	*****	.052 8.447	****

 \rightarrow

.

٢

. .